YOMEDIA
NONE

Giải bất phương trình \(3(x^2-2)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}(\sqrt{x-1}+3\sqrt{x^2-1})\)

Giải bất phương trình \(3(x^2-2)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}(\sqrt{x-1}+3\sqrt{x^2-1})\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐK: \(\small x\geq 1\)
    BPT \(\small \Leftrightarrow 6(x^2-2)+\frac{8\sqrt{2}}{\sqrt{x^2-x+1}}-2\sqrt{x^2-x}-6\sqrt{x}\sqrt{x^2-1}>0\)
    \(\small \Leftrightarrow 3(\sqrt{x^2-1}-\sqrt{x})^2+(\sqrt{x^2-1}-1)^2+2\left ( \frac{4\sqrt{2}}{\sqrt{x^2-x+1}} +x^2-x-5\right )>0\)
    Xét hàm số \(\small f(t)=\frac{4\sqrt{2}}{\sqrt{t+1}}+1-5\) với \(\small t\geq 5\). Ta có \(\small f'(t)=1-\frac{2\sqrt{2}}{(t+1)\sqrt{t+1}}\)
    + \(\small f'(t)=0\Leftrightarrow t=1\)
    + Bảng xét dấu

    Suy ra \(\small f(x)\geq f(1), \forall t\in [ 0;+\infty )\). Dấu “=” xảy ra \(\small \Leftrightarrow\) t=1
    Do \(\small x^2-x\geq 0,\forall x \in [ 0;+\infty )\Rightarrow \frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\geq 0,\forall x\in [ 0;+\infty )\)
    Dấu “=” xảy ra khi \(\small x^2-x+1=0\Leftrightarrow \frac{1+\sqrt{5}}{2}\)
    Khi đó: \(\small 3(\sqrt{x^2-1}-\sqrt{x})^2+(\sqrt{x^2-x}-1)^2+2\left ( \frac{4\sqrt{2}}{\sqrt{x^2-x+1}} +x62-x-5\right )>0\)
    \(\small \Leftrightarrow \Bigg \lbrack\begin{matrix} \sqrt{x^2-1}-\sqrt{x}\neq 0\\ \sqrt{x^2-x}-1\neq 0\\ \frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\neq 0 \end{matrix}\Leftrightarrow x\neq \frac{1+\sqrt{5}}{2}\)
    Tập nghiệm của bất phương trình đã cho là: \(\small S=[ 1;+\infty )\)\ \(\small \left \{ \frac{1+\sqrt{5}}{2} \right \}\)

      bởi Nguyễn Trọng Nhân 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON