YOMEDIA
NONE

Giá trị của \(m\) để đường thẳng sau \(d:y = \left( {2m - 3} \right)x + m - 3\) vuông góc với đường thẳng đi qua hai điểm cực trị của hàm số \(y = {x^3} - 3{x^2} + 1\) là

A. \(m = \dfrac{1}{2}\)                   

B. \(m = 1\)

C. \(m =  - \dfrac{1}{2}\)               

D. \(m = \dfrac{7}{4}\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • TXĐ :  \(D = \mathbb{R}\)

    Ta có :

    \(\begin{array}{l}y = f\left( x \right) = {x^3} - 3{x^2} + 1\\ \Rightarrow f'\left( x \right) = 3{x^2} - 6x = 3x\left( {x - 2} \right)\\f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

    \(f\left( 0 \right) = 1;f\left( 2 \right) =  - 3\) nên \(A\left( {0;1} \right)\) và \(B\left( {2; - 3} \right)\) là 2 điểm cực trị của đồ thị hàm số đã cho

    Phương trình đường thẳng \(AB\) đi qua \(A\left( {0;1} \right)\) và \(B\left( {2; - 3} \right)\) là  \(y =  - 2x + 1\)

    Đường thẳng \(d\) vuông góc với \(AB\) khi và chỉ khi \(\left( {2m - 3} \right).\left( { - 2} \right) =  - 1 \Leftrightarrow m = \dfrac{7}{4}\) 

    Chọn D

      bởi Lê Bảo An 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON