YOMEDIA
NONE

Có số phức \(z = x + yi\) \(\left( {x \ge 0,\,\,y \ge 0} \right)\) thỏa \(\left| {z - 1 + i} \right| \le \left| {z - 3 - 5i} \right|\). Giá trị lớn nhât của \(T = 35x + 63y\) bằng:

A. 70

B. 126

C. 172

D. 280

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có

    \(\begin{array}{l}\,\,\,\,\,\,\left| {z - 1 + i} \right| \le \left| {z - 3 - 5i} \right|\\ \Leftrightarrow \left| {x + yi - 1 + i} \right| \le \left| {x + yi - 3 - 5i} \right|\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} \le {\left( {x - 3} \right)^2} \\+ {\left( {y - 5} \right)^2}\\ \Leftrightarrow {x^2} - 2x + 1 + {y^2} + 2y + 1 \le {x^2}\\ - 6x + 9 + {y^2} - 10y + 25\\ \Leftrightarrow 4x + 12y - 32 \le 0\\ \Leftrightarrow x + 3y \le 8\end{array}\)

    Khi đó ta có: \(\left( {x;y} \right)\) là cặp số thỏa mãn \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 3y \le 8\end{array} \right.\).

    Miền nghiệm là tam giác OAB (phần không bị gạch, kể cả bờ là các cạnh của tam giác OAB), với \(O\left( {0;0} \right)\), \(A\left( {0;\dfrac{8}{3}} \right)\), \(B\left( {8;0} \right)\). 

    Ta có: \(T\left( O \right) = 0,\,\,T\left( A \right) = 168,\,\,T\left( B \right) = 280\).

    Vậy \(\max T = 280 \Leftrightarrow z = 8.\) 

    Chọn D.

      bởi Lê Thánh Tông 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON