YOMEDIA
NONE

Có bao nhiêu giá trị của tham số \(m\) để giá trị lớn nhất của hàm số sau \(y = \dfrac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn \(\left[ {0;\,4} \right]\) bằng \( - 1.\)

A. \(3\).

B. \(2\).

C. \(1\).

D. \(0\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐK : \(x \ne m\)

    Ta có \(y' = \dfrac{{{m^2} - m + 2}}{{{{\left( {x - m} \right)}^2}}}\)  nhận thấy\({m^2} - m + 2 = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{7}{4} > 0;\,\forall m\)  nên \(y' > 0;\,\forall m\)

    Hay hàm số đồng bến trên từng khoảng xác định.

    Để hàm số đạt GTLN trên \(\left[ {0;4} \right]\) thì \(m \in \left[ {0;4} \right] \Leftrightarrow \left[ \begin{array}{l}m < 0\\m > 4\end{array} \right.\)

    Suy ra \(\mathop {\max }\limits_{\left[ {0;4} \right]} y = y\left( 4 \right) = \dfrac{{4 - {m^2} - 2}}{{4 - m}}\,\) . Theo bài ra ta có

    \(\dfrac{{4 - {m^2} - 2}}{{4 - m}} =  - 1 \Rightarrow  - {m^2} + 2 = m - 4 \Leftrightarrow {m^2} + m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\,\left( {ktm} \right)\\m =  - 3\,\,\left( {tm} \right)\end{array} \right.\)

    Vậy có một giá trị của \(m\) thỏa mãn.

    Chọn C.

      bởi Nguyễn Trung Thành 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON