YOMEDIA
NONE

Cm tiếp tuyến tại điểm có x=1 luôn cắt (C_m): y=x^4-8x^2+m+1 tại 3 điểm

Cho hàm số \(y=x^4-8x^2+m+1\left(C_m\right)\)

Chứng minh tiếp tuyến của đồ thị \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=1\) luôn cắt đồ thị  \(\left(C_m\right)\) tại 3 điểm phân biệt. Tìm tọa độ các giao điểm

 
Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(y'=4x^3-16x\)

    Vì \(x_0=1\Rightarrow y_0=m-6;y'\left(x_0\right)=-12\)

    Phương trình tiếp tuyến d của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=1\) là :

    \(y=-12\left(x-1\right)+m-6=-12x+m+6\)

    Phương trình hoành độ giao điểm của  \(\left(C_m\right)\) với d :

    \(x^4-8x^2+m+1=-12x+m+6\Leftrightarrow x^4-8x^2+12-5=0\)

    \(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x-5\right)=0\Leftrightarrow x=1,x=-1\pm\sqrt{6}\)

    Vậy d và  \(\left(C_m\right)\) luôn cắt nhay tại 3 điểm 

    \(A\left(1;m-6\right);B\left(-1\pm\sqrt{6};m+18\ne\sqrt{6}\right)\)

     
      bởi nguyệt trần 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON