YOMEDIA
NONE

Cho số phức z thỏa mãn: \(\left| {z - 3 + 4i} \right| = 4\). Tìm giá trị nhỏ nhất của \(\left| z \right|\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử z = a+bi, ta có: \(\left| {a + bi - 3 + 4i} \right| = 4 \Rightarrow {\left( {a - 3} \right)^2} + {\left( {b + 4} \right)^2} = 16\)

    Đặt \(\left\{ \begin{array}{l}
    a - 3 = 4\sin \varphi \\
    b + 4 = 4\cos \varphi 
    \end{array} \right. \Rightarrow \left\{ \begin{array}{l}
    a = 3 + 4\sin \varphi \\
    b = 4\cos \varphi  - 4
    \end{array} \right.\)

    \(\begin{array}{l}
     \Rightarrow {\left| z \right|^2} = {a^2} + {b^2} = 9 + 16{\sin ^2}\varphi  + 24\sin \varphi  + 16{\cos ^2}\varphi  + 16 - 32\cos \varphi \\
     = 41 + 24\sin \varphi  - 32\cos \varphi  = 41 + 40(\frac{3}{5}\sin \varphi  - \frac{4}{5}\cos \varphi )
    \end{array}\)

    Đặt \(\cos \alpha  = \frac{3}{5},\sin \alpha  = \frac{4}{5} \Rightarrow {\left| z \right|^2} = {a^2} + {b^2} = 41 + 40\sin (\varphi  - \alpha ) \ge 1\).

    Dấu "=" xảy ra khi \(\varphi  - \alpha  =  - \frac{\pi }{2} + k2\pi  \Rightarrow \varphi  =  - \frac{\pi }{2} + \alpha  + k2\pi \). Do đó \(Min\left| z \right| = 1\)

    Ngoài ra để tìm GTNN, GTLN của \(\left| z \right|\) ta có thể sử dụng phương pháp hình học.

      bởi Trịnh Lan Trinh 31/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON