YOMEDIA
NONE

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a,\) \(O\) là trọng tâm tam giác \(ABC\) và \(A'O = \dfrac{{2a\sqrt 6 }}{3}.\) Tính thể tích của khối lăng trụ \(ABC.A'B'C'\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(E\) là trung điểm của \(BC.\)

    Vì \(ABC\) là tam giác đều cạnh \(2a\) nên \(AE = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \)

    Vì \(O\) là trọng tâm tam giác \(ABC\) nên \(AO = \dfrac{2}{3}.AE = \dfrac{2}{3}.a\sqrt 3  = \dfrac{{2a\sqrt 3 }}{3}\)

    Xét tam giác \(AOA'\) vuông tại \(A\) nên \(AA' = \sqrt {A'{O^2} - A{O^2}}  = \sqrt {{{\left( {\dfrac{{2a\sqrt 6 }}{3}} \right)}^2} - {{\left( {\dfrac{{2a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{2a\sqrt 3 }}{3}\)

    Diện tích đáy \({S_{ABC}} = \dfrac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

    Thể tích lăng trụ \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = \dfrac{{2a\sqrt 3 }}{3}.{a^2}\sqrt 3  = 2{a^3}.\)

      bởi Nguyễn Quang Thanh Tú 29/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON