YOMEDIA
NONE

Cho khối lập phương biết rằng khi tăng độ dài cạnh của khối lập phương thêm \(2{\mkern 1mu} {\mkern 1mu} cm\) thì thể tích của nó tăng thêm \(98{\mkern 1mu} {\mkern 1mu} c{m^3}\). Hỏi cạnh của khối lập phương đã cho bằng:

A. \(3{\mkern 1mu} {\mkern 1mu} cm\)                  

B. \(4{\mkern 1mu} {\mkern 1mu} cm\)              

C. \(6{\mkern 1mu} {\mkern 1mu} cm\)             

D. \(5{\mkern 1mu} {\mkern 1mu} cm\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử độ dài cạnh của khối lập phương là a (cm) \( \Rightarrow \) Thể tích của khối lập phương là \({a^3}\)

    Khi tăng độ dài cạnh của khối lập phương thêm \(2{\mkern 1mu} {\mkern 1mu} cm\) thì thể tích của khối lập phương mới là: \({\left( {a + 2} \right)^3}\)

    Theo đề bài, ta có: \({\left( {a + 2} \right)^3} - {a^3} = 98 \Leftrightarrow 6{a^2} + 12a - 90 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 3{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{a = {\rm{\;}} - 5{\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.\)

    Vậy cạnh của khối lập phương đã cho bằng \(3{\mkern 1mu} {\mkern 1mu} cm\).

    Chọn A.

      bởi Ngọc Trinh 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON