YOMEDIA
NONE

Cho hình phẳng giới hạn bởi các đường sau \(y = a{x^2}\), \(y = bx\) \(\left( {a,b \ne 0} \right)\) quay xung quanh trục \(Ox\). Thể tích của khối tròn xoay tạo thành bằng:

A.  \(V = \pi .\frac{{{b^3}}}{{{a^3}}}\left( {\frac{1}{3} - \frac{1}{5}} \right)\)

B.  \(V = \pi .\frac{{{b^5}}}{{5{a^3}}}\)

C.  \(V = \pi .\frac{{{b^5}}}{{3{a^3}}}\).

D.  \(V = \pi .\frac{{{b^5}}}{{{a^3}}}\left( {\frac{1}{3} - \frac{1}{5}} \right)\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét phương trình hoành độ giao điểm \(a{x^2} = bx \Leftrightarrow a{x^2} - bx = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{b}{a}\end{array} \right.\)

    Thể tích cần tìm là

    \(\begin{array}{l}V = \pi \int\limits_0^{\frac{b}{a}} {\left| {{a^2}{x^4} - {b^2}{x^2}} \right|dx} \\ = \pi \left| {\left. {\left( {\frac{{{a^2}{x^5}}}{5} - {b^2}\frac{{{x^3}}}{3}} \right)} \right|_0^{\frac{b}{a}}} \right|\\ = \pi \left| {\frac{{{b^5}}}{{5{a^3}}} - \frac{{{b^5}}}{{3{a^3}}}} \right|\\ = \pi \frac{{{b^5}}}{{{a^3}}}\left( {\frac{1}{3} - \frac{1}{5}} \right)\end{array}\) 

    Đáp án D

      bởi Lê Thánh Tông 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON