YOMEDIA
NONE

Cho hình lăng trụ đứng ABCD A’B’C’D’ có đáy hình thoi cạnh a, \(\widehat{BAD}=60^0\) và AC' = 2a

Cho hình lăng trụ đứng ABCD A’B’C’D’ có đáy hình thoi cạnh a, \(\widehat{BAD}=60^0\) và AC' = 2a. Gọi O là giao điểm của AC và BD, E là giao điểm cả A’C và OC’. Tính thể tích khối lăng trụ ABCD A’B’C’D’ và khoảng cách từ điểm A đến mặt phẳng (EBD).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)


  • ∆ABD có: AB = AD = a, \(\widehat{BAD}=60^0\) nên ∆ABD đều
    Suy ra \(AO=\frac{a\sqrt{3}}{2}\Rightarrow AC=a\sqrt{3}, CC'=a\)

    \(S_{ABCD}=\frac{1}{2}AC.BD=\frac{a^2\sqrt{3}}{2}.\) Do vậy \(V_{ABCD.A'B'C'D'}=CC'.S_{ABCD}=\frac{a^3\sqrt{3}}{2}\)
    Vẽ CH \(\perp\) OC’ H \(\in\) OC’ (1)
    T có: \(\left.\begin{matrix} BD\perp OC\\ BD\perp CC' \end{matrix}\right\}\Rightarrow BD\perp (OCC')\Rightarrow BD\perp CH\) (2)
    Từ (1) và (2)  ta có: \(CH\perp (EBD)\) nên d(C,(EBD))=CH
    AC cắt (EBD) tại O và O là trung điểm của AC
    Do vậy d(A,(EBD)) = d(C,(EBD))=CH=\(\frac{CC'.OC}{\sqrt{CC'^2.OC^2}}=\frac{a.\frac{a\sqrt{3}}{2}}{\sqrt{a^2+\frac{3a^2}{4}}}=\frac{a\sqrt{21}}{7}\)
     

      bởi thu hằng 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON