YOMEDIA
NONE

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a

Khó quá, em bỏ cuộc rồi, mọi người giúp vs! Em cảm ơn nhiều ạ.

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm H của AB. SC tạo với đáy một góc 450. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB, AC.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)


  • HC là hình chiếu của SC trên mp(ABCD) nên góc giữa SC và mp(ABCD) là SCH.
    Từ gt suy ra \(SCH=45^0\)
    Suy ra SH = HC = \(a\sqrt{2}\).
    \(S_{ABCD}=2a^2\)
    Vậy \(V_{ABCD}=\frac{2\sqrt{2}a^3}{3}\) (đvtt)
    Kẻ đt d đi qua B và song song với AC. Gọi E là hình chiếu của H trên đt d.
    Suy ra AC // (SBE) 
    \(\Rightarrow d (SB,AC) =d (AC, (SBE)) =d (A, (SBE))= 2d (H, (SBE) )\)(Vì AB = 2HB)
    Gọi F là hình chiếu của H trên SE
    Khi đó: BE \(\perp\) SHE, HF \(\perp\) SBE
    Suy ra d(H, (SBE)) = HF
    \(HE=HB.sinEBH=HB.sinBAC=HB.\frac{BC}{AC}=\frac{a}{\sqrt{5}}\)
    \(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{HS^2}=\frac{11}{2a^2}\Rightarrow HF=\frac{a\sqrt{22}}{11}\)
    Vậy \(d(SB,AC)=\frac{2a\sqrt{22}}{11}\)

      bởi Huong Duong 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON