YOMEDIA
NONE

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Biết khẳng nào sau đây đúng?

A. Nếu hàm số có giá trị cực đại là \(f\left( {{x_0}} \right)\) với \({x_0} \in \mathbb{R}\) thì \(f\left( {{x_0}} \right) = \mathop {{\rm{Max}}}\limits_{x \in \mathbb{R}} f\left( x \right).\)

 

B. Nếu hàm số có giá trị cực tiểu là \(f\left( {{x_0}} \right)\) với \({x_0} \in \mathbb{R}\) thì tồn tại \({x_1} \in \mathbb{R}\) sao cho \(f\left( {{x_0}} \right) < f\left( {{x_1}} \right).\)

C. Nếu hàm số có giá trị cực đại là \(f\left( {{x_0}} \right)\) với \({x_0} \in \mathbb{R}\) thì \(f\left( {{x_0}} \right) = \mathop {{\rm{Min}}}\limits_{x \in \mathbb{R}} f\left( x \right).\)

D. Nếu hàm số có giá trị cực tiểu là \(f\left( {{x_0}} \right)\) với \({x_0} \in \mathbb{R}\) và có giá trị cực đại là \(f\left( {{x_1}} \right)\) với \({x_1} \in \mathbb{R}\) thì \(f\left( {{x_0}} \right) < f\left( {{x_1}} \right).\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Dựa vào các đáp án ta thấy chỉ có đáp án B đúng: Nếu hàm số có giá trị cực tiểu là \(f\left( {{x_0}} \right)\) với \({x_0} \in \mathbb{R}\) thì tồn tại \({x_1} \in \mathbb{R}\) sao cho \(f\left( {{x_0}} \right) < f\left( {{x_1}} \right).\)

    Chọn B.

      bởi Lê Nhật Minh 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON