YOMEDIA
NONE

Cho các số thực \(a,b > 1\) thỏa mãn \({a^{{{\log }_b}a}} + 16{b^{{{\log }_a}\left( {\frac{{{b^8}}}{{{a^3}}}} \right)}} = 12{b^2}.\) Hãy tiá trị của biểu thức \(P = {a^3} + {b^3}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \({a^{{{\log }_b}a}} + 16{b^{{{\log }_a}\left( {\frac{{{b^8}}}{{{a^3}}}} \right)}} = 12{b^2} \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {{{\log }_a}{b^8} - {{\log }_a}{a^3}} \right)}} = 12{b^2}\)

    \( \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {{{\log }_a}{b^8} - {{\log }_a}{a^3}} \right)}} = 12{b^2} \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {8{{\log }_a}b - 3} \right)}} = 12{b^2} \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {\dfrac{8}{{{{\log }_b}a}} - 3} \right)}} = 12{b^2}\) (*)

    Đặt \({\log _a}b = t \Rightarrow a = {b^t}\) . Lại có vì \(a,b > 1 \Rightarrow {\log _a}b > 0\) hay \(t > 0\).

    Khi đó ta có

    \(VT\left( * \right) = {a^{{{\log }_b}a}} + 16{b^{\left( {\frac{8}{{{{\log }_b}a}} - 3} \right)}} = {\left( {{b^t}} \right)^t} + 16.{b^{\frac{8}{t} - 3}} = {b^{{t^2}}} + 8.{b^{\frac{8}{t} - 3}} + 8.{b^{\frac{8}{t} - 3}}\)

    \(\mathop  \ge \limits^{Co  - si} 3\sqrt[3]{{{b^{{t^2}}}.8.{b^{\frac{8}{t} - 3}}8.{b^{\frac{8}{t} - 3}}}} = 12\sqrt[3]{{{b^{{t^2}}}{b^{\frac{8}{t} - 3}}{b^{\frac{8}{t} - 3}}}}12\sqrt[3]{{{b^{{t^2} + \frac{8}{t} + \frac{8}{t} - 6}}}}\)

    \(\mathop  \ge \limits{Co - si} 12\sqrt[3]{{{b^{3\sqrt[3]{{{t^2}.\frac{8}{t}.\frac{8}{t}}} - 6}}}} = 12\sqrt[3]{{{b^6}}} = 12{b^2}\)  (vì \({t^2} + \frac{8}{t} + \frac{8}{t} \ge 3\sqrt[3]{{{t^2}.\frac{8}{t}.\frac{8}{t}}} = 3\))

    Hay \(VT\left( * \right) \ge 12{b^2}\) , dấu = xảy ra khi \(\left\{ \begin{array}{l}{b^{{t^2}}} = 8{b^{\frac{8}{t} - 3}}\\{t^2} = \frac{8}{t}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 2\\{b^4} = 8b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}t = 2\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _b}a = 2\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = 4\end{array} \right.\left( {TM} \right)\)

    Suy ra \(P = {a^3} + {b^3} = 64 + 8 = 72.\)

      bởi Nguyễn Minh Minh 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON