YOMEDIA
NONE

Biết trong không gian \(Oxyz,\) cho ba điểm \(A(1;0;0),\,B(3;2;4),\,C(0;5;4)\). Gọi \(M(a;b;c)\) là điểm thuộc mặt phẳng \((Oyz)\)sao cho biểu thức \(T = M{A^2} + M{B^2} + 2M{C^2}\) đạt giá trị nhỏ nhất. Khi đó \(a + b + c\)bằng

A. 0.                                       B. 6.

C. 5.                                       D. 2.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(M\left( {a;b;c} \right) \in \left( {Oyz} \right)\) \( \Rightarrow M\left( {0;b;c} \right)\)

    \(\begin{array}{l} \Rightarrow AM = \sqrt {1 + {b^2} + {c^2}} \\BM = \sqrt {9 + {{\left( {b - 2} \right)}^2} + {{\left( {c - 4} \right)}^2}} \\CM = \sqrt {{{\left( {b - 5} \right)}^2} + {{\left( {c - 4} \right)}^2}} \\ \Rightarrow A{M^2} = 1 + {b^2} + {c^2}\\B{M^2} = 9 + {\left( {b - 2} \right)^2} + {\left( {c - 4} \right)^2}\\C{M^2} = {\left( {b - 5} \right)^2} + {\left( {c - 4} \right)^2}\\ \Rightarrow T = A{M^2} + B{M^2} + 2C{M^2}\\ = 1 + {b^2} + {c^2}\\ + 9 + {\left( {b - 2} \right)^2} + {\left( {c - 4} \right)^2}\\ + 2\left[ {{{\left( {b - 5} \right)}^2} + {{\left( {c - 4} \right)}^2}} \right]\\ = 1 + {b^2} + {c^2}\\ + 9 + {b^2} - 4b + 4 + {c^2} - 8c + 16\\ + 2\left( {{b^2} - 10b + 25 + {c^2} - 8c + 16} \right)\\ = 112 + 4{b^2} + 4{c^2} - 24b - 24c\\ = 4\left( {{b^2} + {c^2} - 6b - 6c + 28} \right)\\ = 4\left[ {{{\left( {b - 3} \right)}^2} + {{\left( {c - 3} \right)}^2} + 10} \right]\\ \ge 4.\left( {0 + 0 + 10} \right) = 40\\ \Rightarrow T \ge 40\end{array}\)

    \( \Rightarrow {T_{\min }} = 40\) khi \(b = c = 3\)

    Vậy \(a + b + c = 0 + 3 + 3 = 6\)

    Đáp án B

      bởi Lê Tấn Vũ 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON