-
Câu hỏi:
Với a là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
- A. \({a^{\frac{3}{2}}}.\)
- B. \({a^{\frac{3}{4}}}.\)
- C. \({a^{\frac{2}{3}}}.\)
- D. \({a^{\frac{4}{3}}}.\)
Lời giải tham khảo:
Đáp án đúng: D
\(a\sqrt[3]{a} = a.{a^{\frac{1}{3}}} = {a^{\frac{4}{3}}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Từ một nhóm có 10 học sinh. Có bao nhiêu cách chọn ra 3 học sinh và xếp thành một hàng ngang?
- Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{5}}=6\) và công sai d=1. Giá trị của \({{u}_{3}}\) bằng
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau: Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau: Điểm cực đại của đồ thị hàm số đã cho là
- Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \({f}'\left( x \right)\) như sau: Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
- Tiệm cận đứng của đồ thị hàm số \(y=\frac{-2x+4}{-x+1}\) là đường thẳg:
- Hàm số \(y={{x}^{4}}-1\) có đồ thi là hình nào dưới đây?
- Đồ thị của hàm số \(y = {\left( {x - 1} \right)^2}\left( {x + 2} \right)\) cắt trục tung tại điểm có tung độ bằng
- Với a là số thực dương tùy ý, \(\ln \left( {ea} \right)\) bằng
- Đạo hàm của hàm số \(y = {\pi ^x}\) là
- Với a là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
- Nghiệm của phương trình \({4^{2x - 1}} = 32\) là
- Nghiệm của phương trình \({{\log }_{3}}\left( 1-3x \right)=2\) là
- Cho hàm số \(f\left( x \right)=-3{{x}^{2}}+1.\) Trong các khẳng định sau, khẳng định nào đúg?
- Hàm \(F\left( x \right)=\cos 2x+5\) là một nguyên hàm của hàm số nào dưới đây?
- Nếu \(\int\limits_{1}^{2}{f\left( x \right)dx=-2}\) và \(\int\limits_{1}^{3}{f\left( x \right)dx=6}\) thì \(\int\limits_{2}^{3}{f\left( x \right)dx}\) bằng
- Tích phân \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) bằng
- Số phức liên hợp của số phức z = 2021i là
- Cho số phức z=2-3i và \(\text{w}=1+i\). Số phức \(z+2\text{w}\) bằng
- Trên mặt phẳng tọa độ, điểm \(M\left( 2;-3 \right)\) biểu diễn số phức nào dưới đây?
- Cho khối chóp S.ABCD có đáy là hình vuông cạnh đáy bằng a và SA vuông góc với đáy với \(SA=a\sqrt{3}.\) Thể tích của khối chóp S.ABCD bằng
- Thể tích khối lập phươg có cạnh 3a là
- Công thức tính thể tích \(V\) của khối trụ có bán kính đáy r và chiều cao h là
- Cho hình trụ có bán kính đáy bằng 3cm, độ dài đường cao bằng 4cm. Diện tích xung quanh của hình trụ bằng
- Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;4 \right)\) và \(B\left( 2;4;-1 \right)\). Tìm tọa độ trọng tâm G của tam giác OAB.
- Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tìm tọa độ tâm I của mặt cầu \(\left( S \right)\).
- Trong không gian Oxyz, cho điểm \(M\left( m;1;6 \right)\) và mặt phẳng \(\left( P \right):x-2y+z-5=0\). Điểm M thuộc mặt phẳng \(\left( P \right)\) khi giá trị của tham số m là
- Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng \(d:\frac{x-2}{-1}=\frac{y-1}{2}=\frac{z}{1}\) là
- Gọi S là tập các số tự nhiên có bốn chữ số khác nhau được tạo từ tập \(E=\left\{ 1;2;3;4;5 \right\}\). Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số lẻ.
- Hàm số nào sau đây đồg biến trên tập xác định của nó?
- Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+3}{x-1}\) trên đoạn \(\left[ 2;3 \right]\) lần lượt là M và m. Tổng M+m bằng
- Tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^{{x^2} - x}} > {2^{x - 4}}\) là
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{1}{\left[ f\left( x \right)+3{{x}^{2}} \right]\text{d}x}=6\). Khi đó \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
- Cho số phức z=2+3i. Tìm môđun của số phức \(w=\left( 1+i \right)z-\bar{z}\)
- Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( ABC \right)\) và \(SA=a\sqrt{2}\), biết tam giác ABC vuông cân tại B và AC=2a (minh họa như hình vẽ).
- Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B với AB=BC=a, AD=2a. Biết \(SA\bot \left( ABCD \right)\) và SA=a. Tính khoảng cách giữa AD và SB.
- Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;1 \right), B\left( 0;3;-1 \right)\). Mặt cầu \(\left( S \right)\) đường kính AB có phương trình là
- Trong không gian Oxyz, cho tam giác ABC với \(A\left( 3;1;2 \right), B\left( -3;2;5 \right), C\left( 1;6;-3 \right)\). Khi đó phương trình trung tuyến AM của tam giác ABC là
- Cho \(y=f\left( x \right)\) có đồ thị của \(y={f}'\left( x \right)\) như hình vẽ dưới đây. Đặt \(M=\underset{\left[ \text{-2;6} \right]}{\mathop{\text{max}}}\,\text{ }f\left( x \right), m=\underset{\left[ \text{-2;6} \right]}{\mathop{\text{min}}}\,\text{ }f\left( x \right)\). Giá trị của biểu thức M+m bằng
- Số giá trị nguyên dương của tham số m thỏa m
- Giả sử hàm số f liên tục trên đoạn [0;2] thỏa mãn \(\int\limits_{0}^{1}{f(x)\text{dx}}=6, \int\limits_{1}^{2}{f(x)\text{dx}}=-2\). Giá trị của tích phân \(\int\limits_{0}^{{\pi }/{2}\;}{f(2\sin x)\cos x\text{dx}}\) là
- Cho số phức \(z=a+bi\text{ }\left( a,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z \right|=5\) và \(z\left( 2+i \right)\left( 1-2i \right)\) là một số thực. Tính giá trị của \(P=\left| a \right|+\left| b \right|\).
- Cho hình chóp S.ABC có ABC là tam giác đều và cạnh bên SA vuông góc với đáy, với \(SA=\frac{a}{2}\). Góc tạo bởi mặt phẳng \(\left( SBC \right)\) và mặt phẳng \(\left( ABC \right)\) bằng \(30{}^\circ \). Thể tích của khối chóp S.ABC bằng
- Nghiêng một cốc nước hình trụ có đựng nước, người ta thấy bề mặt nước là hình elip có độ dài trục lớn là \(10\,\text{ cm}\), khoảng cách từ hai đỉnh trên trục lớn của elip đến đáy cốc lần lượt là \(5\text{ cm}\) và \(11\,\text{ cm}\). Tính thể tích nước trong cốc.
- Trong không gian Oxyz cho đường thẳng \(\Delta :\frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{1}\) và mặt phẳng \(\left( P \right):x-2y-z+3=0\). Đường thẳng nằm trong \(\left( P \right)\) đồng thời cắt và vuông góc với \(\Delta \) có phương trình là
- Cho f(x) là hàm số bậc bốn thỏa mãn f(0)=0. Hàm số \({{f}^{\prime }}(x)\) có bảng biến thiên như sau: Hàmsố \(g(x)=\left| f\left( {{x}^{3}} \right)-2021x \right|\) có bao nhiêu điểm cực trị?
- Có bao nhiêu số nguyên y để tồn tại số thực x thỏa mãn \({\log _3}\left( {x + 2y} \right) = {\log _2}\left( {{x^2} + {y^2}} \right)\)
- Cho hàm số \(y={{x}^{4}}-3{{x}^{2}}+m\) có đồ thị \(\left( {{C}_{m}} \right)\),với m là tham số thực.Giả sử \(\left( {{C}_{m}} \right)\) cắt trục Ox tại bốn điểm phân biệt như hình vẽ Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để \({{S}_{1}}+{{S}_{3}}={{S}_{2}}\) là
- Cho hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}-5+3i \right|=\left| {{z}_{1}}-1-3i \right|,\left| {{z}_{2}}-4-3i \right|=\left| {{z}_{2}}-2+3i \right|\). Giá trị nhỏ nhất của biểu thức \(P=\left| {{z}_{1}}-{{z}_{2}} \right|+\left| \overline{{{z}_{1}}}-6+i \right|+\left| {{z}_{2}}-6-i \right|\) là
- Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \(\left( P \right):x+y+z-1=0\), đường thẳng \(\left( d \right):\frac{x-15}{1}=\frac{y-22}{2}=\frac{z-37}{2}\) và mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x-6y+4z+4=0\).Một đường thẳng \(\left( \Delta \right)\) thay đổi cắt mặt cầu \(\left( S \right)\) tại hai điểm A,B sao cho AB=8. Gọi \({A}', {B}'\) là hai điểm lần lượt thuộc mặt phẳng \(\left( P \right)\) sao cho \(A{A}',B{B}'\) cùng song song với \(\left( d \right)\).Giá trị lớn nhất của biểu thức \(A{A}'+B{B}'\) là