YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \(\left( P \right):x+y+z-1=0\), đường thẳng \(\left( d \right):\frac{x-15}{1}=\frac{y-22}{2}=\frac{z-37}{2}\) và mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x-6y+4z+4=0\).Một đường thẳng \(\left( \Delta  \right)\) thay đổi cắt mặt cầu \(\left( S \right)\) tại hai điểm A,B sao cho AB=8. Gọi \({A}', {B}'\) là hai điểm lần lượt thuộc mặt phẳng \(\left( P \right)\) sao cho \(A{A}',B{B}'\) cùng song song với \(\left( d \right)\).Giá trị lớn nhất của biểu thức \(A{A}'+B{B}'\) là

    • A. \(\frac{{24 + 18\sqrt 3 }}{5}\)
    • B. \(\frac{{12 + 9\sqrt 3 }}{5}\)
    • C. \(\frac{{16 + 60\sqrt 3 }}{9}\)
    • D. \(\frac{{8 + 30\sqrt 3 }}{9}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Mặt cầu \(\left( S \right)\) có tâm \(I\left( 4;3;-2 \right)\) và bán kính R=5.

    Gọi H là trung điểm của AB thì \(IH\bot AB\) và IH=3 nên H thuộc mặt cầu \(\left( {{S}'} \right)\) tâm I bánkính \({R}'=3\)

    Gọi M là trung điểm của \({A}'{B}'\) thì \(A{A}'+B{B}'=2HM\), M nằm trên mặt phẳng \(\left( P \right)\).

    Mặt khác ta có \(d\left( I;\left( P \right) \right)=\frac{4}{\sqrt{3}}<R\) nên \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) và \(\sin \left( d;\left( P \right) \right)=\sin \alpha =\frac{5}{3\sqrt{3}}\). Gọi K là hình chiếu của H lên \(\left( P \right)\) thì \(HK=HM.\sin \alpha \).

    Vậy để \(A{A}'+B{B}'\) lớn nhất thì HK lớn nhất

    \(\Leftrightarrow HK\) đi qua I nên \(H{{K}_{\max }}={R}'+d\left( I;\left( P \right) \right)=3+\frac{4}{\sqrt{3}}=\frac{4+3\sqrt{3}}{\sqrt{3}}\).

    Vậy \(A{A}'+B{B}'\) lớn nhất bằng \(2\left( \frac{4+3\sqrt{3}}{\sqrt{3}} \right).\frac{3\sqrt{3}}{5}=\frac{24+18\sqrt{3}}{5}\).

    ATNETWORK

Mã câu hỏi: 260955

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON