YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P):x+2z4=0,(Q):x+yz3=0,(R):x+y+z2=0. .Viết phương trình mặt phẳng (α) qua giao tuyến của hai mặt phẳng (P) và (Q), đồng thời vuông góc với mặt phẳng (R).​

    • A. (α):x+2y3z+4=0.  
    • B. (α):2x3yz4=0.
    • C. (α):2x+3y5z5=0.
    • D. (α):3x2y5z5=0.

    Đáp án đúng: C

    Ta có nP=(1;0;2),nQ=(1;1;1) u=[nP,nQ]=(2;3;1) là VTCP của giao tuyến.

    Cặp véctơ chỉ phương của (α) là: u=(2;3;1),nR=(1;1;1)

    nα=[u,nR]=(2;3;5) là véctơ pháp tuyến của (α)

    Điểm A(0;52;12) thuộc giao tuyến của (P) và (Q)

    (tọa độ điểm A là nghiệm hệ phương trình tương giao giữa 2 mặt phẳng (P) và(Q)).

    Vậy PTTQ (α) là: 2x+3(y52)5(z+12)=0 hay 2x+3y5z50=0.

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ PHƯƠNG TRÌNH MẶT PHẲNG

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON