-
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;1) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{z}{1}.\) Viết phương trình mặt phẳng chứa A và vuông góc với d.
- A. \(x - y + z - 1 = 0\)
- B. \(x - y + z + 1 = 0\)
- C. \(x - y + z = 0\)
- D. \(x - y + z - 2 = 0\)
Đáp án đúng: C
Ta có \(\overrightarrow {{u_{\left( d \right)}}} = \left( {1; - 1;1} \right)\) chính là vectơ pháp tuyến của mặt phẳng (P)
Phương trình mặt phẳng (P) đi qua điểm A và có \(\overrightarrow n = \left( {1; - 1;1} \right)\) là \(x - y + z = 0\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ PHƯƠNG TRÌNH MẶT PHẲNG
- Mặt phẳng (P) thay đổi di qua M(1;2;1) lần lượt cắt các tia Ox, Oy, Oz tại A, B, C. Tìm giá trị nhỏ nhất V của thể tích khối tứ diện OABC
- Viết phương trình mặt phẳng (Q) chứa đường thẳng d và tạo với (P) một góc nhỏ nhất biết d: x+1/2=y+1=z-3 và (P):x+2y-z+5=0
- Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;-5) Gọi M, N, P là hình chiếu của A lên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (MNP)
- Cho mặt phẳng (P) :2x-z - 3 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)
- Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với (S) biết (S):{x^2} + {y^2} + {z^2} - 2x + 6y - 8z - 10 = 0;(P):x + 2y - 2z + 2017 = 0
- Viết phương trình mặt phẳng (Q) chứa đường thẳng d và vuông góc mặt phẳng (P) biết d: x-1/2=y/1=z+1/3 và (P):2x + y - z = 0
- Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng (ABC) biết A(0;-1;0), B(2;0;0), C(0;0;4)
- Viết phương trình mặt phẳng alpha chứa đường thẳng d và vuông góc mặt phẳng (P) biết d: x-1/1=y/-2=z+1/-1 và (P): x+y-z+1=0
- Viết phương trình mặt phẳng (P) qua H cắt các tia Ox, Oy, Oz tại 3 điểm là đỉnh của một tam giác nhận H(1;4;3) làm trực tâm
- Viết phương trình mặt phẳng qua A(1;1;1) vuông góc với hai mặt phẳng x + y - z - 2 = 0 và x - y + z - 1 = 0