-
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {1; - 1;1} \right);B\left( {2;1; - 2} \right),C\left( {0;0;1} \right).\) Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính giá trị của \(Q = x + y + z.\)
- A. \(Q=1\)
- B. \(Q=\frac{1}{3}\)
- C. \(Q=2\)
- D. \(Q=3\)
Lời giải tham khảo:
Đáp án đúng: A
\(\overrightarrow {AB} = \left( {1;2; - 3} \right);\overrightarrow {BC} = \left( { - 2; - 1;3} \right);\)
\(\overrightarrow {AC} = \left( { - 1;1;0} \right)\)
\(\left[ {\overrightarrow {AB} ;\overrightarrow {BC} } \right] = \left( {3;3;3} \right) \)
\(\Rightarrow \overrightarrow {{n_{\left( {ABC} \right)}}} = \left( {1;1;1} \right)\) là VTPT của mặt phẳng (ABC).
Mặt khác (ABC) đi qua A nên có pt:
\(\left( {ABC} \right):x + y + z - 1 = 0.\)
\(\overrightarrow {AH} = \left( {x - 1;y + 1;z - 1} \right);\)
\(\overrightarrow {BH} = \left( {x - 2;y - 1;z + 2} \right);\)
\(\overrightarrow {CH} = \left( {x;y;z - 1} \right)\)
\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{\overrightarrow {AH} .\overrightarrow {BC} = 0}\\
{\overrightarrow {BH} .\overrightarrow {AC} = 0}
\end{array}}\\
{H \in \left( {ABC} \right)}
\end{array}} \right.\\
\Rightarrow \left\{ {\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{ - 2x - y + 3z = 2}\\
{ - x + y = - 1}
\end{array}}\\
{x + y + z - 1 = 0}
\end{array}} \right. \Rightarrow H\left( {\frac{5}{9};\frac{{ - 4}}{9};\frac{8}{9}} \right).
\end{array}\)\( \Rightarrow Q = \frac{5}{9} + \left( { - \frac{4}{9}} \right) + \frac{8}{9} = 1\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {1; - 1;1} \right);B\left( {2;1; - 2} \right),C\left( {0;0;1} \right).\) Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính giá trị của \(Q = x + y + z.\)
- Trong không gian với hệ trục Oxyz, cho đường thẳng \(\left( d \right):x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\) và song song với mặt phẳng \(\left( P \right):x + 4y + 9z - 9 = 0.\) Tìm giao điểm I của (d ) và (P).
- Trong không gian với hệ trục Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(0;1;2) trên mặt phẳng (P):x+y+z=0
- Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị thực của m để đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 1}}{1}\) song song với mặt phẳng (P): \(x + y - z + m = 0.\)
- Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 16 = 0\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{z}{2}.\) Mặt phẳng nào trong các mặt phẳng sau đây chứa d và tiếp xúc với mặt cầu (S).
- Trong không gian Oxyz, cho đường thẳng \(\left( \Delta \right):\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\). Tìm hình chiếu vuông góc của \(\left( \Delta \right)\) trên mặt phẳng (Oxy).
- Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( { - 2;1;0} \right)\) và đường thẳng \(\Delta :\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{2}.\) Viết phương trình mặt phẳng (P) qua M và chứa đường thẳng \(\Delta\).
- Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z + 1}}{2}\) và điểm \(I\left( {1;0;2} \right).\) Viết phương trình mặt cầu tâm I và tiếp xúc với đường thẳng d.
- Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0;1;2} \right),B\left( {2; - 2;1} \right),C\left( { - 2;0;1} \right)\) và mặt phẳng \(\left( P \right):2x + 2y + z - 3 = 0\). Tìm tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C.
- Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;3;-2) và đường thẳng \(\Delta :\frac{{x - 4}}{1} = \frac{{y - 4}}{2} = \frac{{z + 3}}{{ - 1}}\). Viết phương trình mặt cầu (S) có tâm là điểm I và cắt tại hai điểm phân biệt A, B sao cho đoạn thẳng AB có độ dài bằng 4.