• Câu hỏi:

    Trong không gian với hệ trục Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(0;1;2) trên mặt phẳng \(\left( P \right):x + y + z = 0.\)

    • A. (-1;0;1)
    • B. (-2;0;2)
    • C.  (-1;1;0)
    • D. (-2;2;0)

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương trình đường thẳng d qua A và vuông góc với (P) là \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}.\) 

    Gọi H là hình chiếu của A trên mp (P) suy ra H là giao điểm của d và (P). 

    H thuộc d nên tọa độ có dạng \(H\left( {t;t + 1;t + 2} \right).\) Thay vào phương trình của (P):

    \(t + t + 1 + t + 2 = 0 \Leftrightarrow 3t + 3 = 0 \Leftrightarrow t = - 1 \Rightarrow H\left( { - 1;0;1} \right).\)

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC