YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian \(Oxyz\), cho hình lập phương \(ABCD.{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\) biết \(A\left( 0\,;0\,;0 \right)\), \(B\left( 1\,;0\,;0 \right)\), \(D\left( 0\,;1\,;0 \right)\), \({{A}_{1}}\left( 0\,;0\,;1 \right)\).Gọi \(\left( P \right)\text{:}\,\,ax+by+cz-3=0\) là phương trình mặt phẳng chứa \(C{{D}_{1}}\) và tạo với mặt phẳng \(\left( B{{B}_{1}}{{D}_{1}}D \right)\) một góc có số đo nhỏ nhất. Giá trị của \(T=a+b+c\) bằng

    • A. \(-1\).   
    • B. \(6\).       
    • C. \(4\).  
    • D. \(3\).

    Lời giải tham khảo:

    Đáp án đúng: C

    Chọn C

    Dễ dàng xác định được tọa độ một số đỉnh của hình lập phương như sau: \(C\left( 1\,;1\,;0 \right)\), \({{D}_{1}}\left( 0\,;1\,;1 \right)\).

    Mặt phẳng \(\left( P \right)\) chứa \(C\), \({{D}_{1}}\) nên ta có:

    \(\left\{ \begin{align} & a+b-3=0 \\ & b+c-3=0 \\ \end{align} \right.\)

    Mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là \(\overrightarrow{n}=\left( a\,;b\,;c \right)\).

    Mặt phẳng \(\left( B{{B}_{1}}{{D}_{1}}D \right)\) có một vectơ pháp tuyến là \(\overrightarrow{AC}=\left( 1;1;0 \right)\).

    Gọi \(\alpha \) là góc giữa mặt phẳng \(\left( P \right)\) và \(\left( B{{B}_{1}}{{D}_{1}}D \right)\). Vì \(0{}^\circ \le \alpha \le 90{}^\circ \) nên \(\alpha \) nhỏ nhất khi \(\cos \alpha \) lớn nhất.

    Ta có: \(\cos \alpha \)\( =\left| \cos \left( \overrightarrow{n},\overrightarrow{AC} \right) \right|\)\( =\frac{\left| \overrightarrow{n}.\overrightarrow{AC} \right|}{\left| \overrightarrow{n} \right|.\left| \overrightarrow{AC} \right|}\)\(=\frac{\left| a+b \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.\sqrt{2}}\)

    \(=\frac{3}{\sqrt{2}.\sqrt{{{\left( 3-b \right)}^{2}}+{{b}^{2}}+{{\left( 3-b \right)}^{2}}}}\)\(=\frac{3}{\sqrt{2}.\sqrt{3{{\left( b-2 \right)}^{2}}+6}}\)\(\le \frac{3}{\sqrt{2}.\sqrt{6}}\)\(=\frac{\sqrt{3}}{2}\).

    Đẳng thức xảy ra khi \(b=2\).

    Suy ra \(\alpha \) nhỏ nhất bằng \(30{}^\circ \) khi \(b=2\); \(a=1\); \(c=1\).

    Vậy \(T=a+b+c=4\).

    ATNETWORK

Mã câu hỏi: 442245

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON