YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \({{3}^{x}}\left( {{3}^{2x}}+1 \right)-\left( {{3}^{x}}+m+2 \right)\sqrt{{{3}^{x}}+m+3}=2\sqrt{{{3}^{x}}+m+3}\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên âm của \(m\) để phương trình có nghiệm thực?

    • A. 5
    • B. 3
    • C. 6
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: B

    Chọn B

    \({{3}^{x}}\left( {{3}^{2x}}+1 \right)-\left( {{3}^{x}}+m+2 \right)\sqrt{{{3}^{x}}+m+3}=2\sqrt{{{3}^{x}}+m+3}\)

    \(\Leftrightarrow {{3}^{x}}\left( {{3}^{2x}}+1 \right)=\left( {{3}^{x}}+m+2 \right)\sqrt{{{3}^{x}}+m+3}+2\sqrt{{{3}^{x}}+m+3}\)

    \(\Leftrightarrow {{3}^{3x}}+{{3}^{x}}=\left( {{3}^{x}}+m+3 \right)\sqrt{{{3}^{x}}+m+3}+\sqrt{{{3}^{x}}+m+3}\)

    \(\Leftrightarrow {{3}^{3x}}+{{3}^{x}}={{\left( \sqrt{{{3}^{x}}+m+3} \right)}^{3}}+\sqrt{{{3}^{x}}+m+3}\).

    Xét hàm đặc trưng \(f\left( t \right)={{t}^{3}}+t\) có \({f}'\left( t \right)=3{{t}^{2}}+1>0,\text{ }\forall t\in \mathbb{R}\).

    Vậy \(\Leftrightarrow {{3}^{3x}}+{{3}^{x}}={{\left( \sqrt{{{3}^{x}}+m+3} \right)}^{3}}+\sqrt{{{3}^{x}}+m+3}\Leftrightarrow f\left( {{3}^{x}} \right)=f\left( \sqrt{{{3}^{x}}+m+3} \right)\)

    \(\Leftrightarrow {{3}^{x}}=\sqrt{{{3}^{x}}+m+3}\Leftrightarrow {{3}^{2x}}-{{3}^{x}}-3=m\).

    Đặt \(u={{3}^{x}}\), với điều kiện \(u>0\) và đặt \(g\left( u \right)={{u}^{2}}-u-3\)

    Phương trình \(\Leftrightarrow g\left( u \right)=m\).

    \({g}'\left( u \right)=2u-1\), \({g}'\left( u \right)=0\Leftrightarrow u=\frac{1}{2}\) ta có bảng biến thiên của \(g\left( u \right)\):

    Từ bảng biến thiên ta thấy phương trình đã cho có nghiệm thực khi và chỉ khi \(m>-\frac{13}{4}\).

    Vậy có tất cả 3 giá trị nguyên âm của \(m\) để phương trình có nghiệm thực là: -3; -2; -1.

    ATNETWORK

Mã câu hỏi: 442266

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON