YOMEDIA
NONE
  • Câu hỏi:

    Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y={{x}^{3}}-3m{{x}^{2}}+3x-6{{m}^{3}}\) đồng biến trên khoảng \(\left( 0;\text{ }+\infty  \right)\) là:

    • A. \(\left( -\infty ;\text{ }1 \right].\)                      
    • B. \(\left( -\infty ;\text{ }2 \right].\)     
    • C. \(\left( -\infty ;\text{ }0 \right].\)
    • D. \(\left[ 2;\text{ }+\infty  \right).\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Chọn A

    + Hàm số xác định với mọi \(x\) thuộc \(\mathbb{R}\)

    + Ta có:\(y'=3{{x}^{2}}-6mx+3\).

    Hàm số đã cho đồng biến trên khoảng \(\left( 0;\text{ }+\infty  \right)\)

    \(\begin{align} & \Leftrightarrow y'\ge 0\text{ }\forall x\in \left( 0;\text{ }+\infty \right)\\&\Leftrightarrow 3{{x}^{2}}-6mx+3\ge 0\text{ }\forall x\in \left( 0;+\infty \right) \\ & \Leftrightarrow \frac{{{x}^{2}}+1}{x}\ge 2m\\&\Leftrightarrow \underbrace{x+\frac{1}{x}}_{f(x)}\ge 2m\\&\Leftrightarrow \underset{\left( 0;\text{ }+\infty \right)}{\mathop{\min f(x)}}\,\ge 2m\text{ (1)} \\ \end{align}\)

    Theo bất đẳng thức Cauchy ta có : \(x+\frac{1}{x}\ge 2\text{ }\forall x\in \left( 0;+\infty  \right)\)\( \Rightarrow \underset{\left( 0;+\infty  \right)}{\mathop{\min f(x)}}\,=2\).

    Do đó :

    \((1)\Leftrightarrow 2\ge 2m\Leftrightarrow m\le 1\)

    ATNETWORK

Mã câu hỏi: 442227

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON