YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian \(Oxyz\), cho hai đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\) và \(d':\left\{ \begin{array}{l}x =  - 1 + t\\y =  - t\\z =  - 2 + 3t\end{array} \right.\) cắt nhau. Phương trình mặt phẳng chứa \(d\) và \(d'\) là 

    • A. \(6x + 9y + z + 8 = 0\)
    • B. \(6x - 9y - z - 8 = 0\)
    • C. \( - 2x + y + 3z - 8 = 0\) 
    • D. \(6x + 9y + z - 8 = 0\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Mặt phẳng \(\left( P \right)\) chứa \(d\) và \(d'\) nếu nó đi qua \(M = d \cap d'\) và nhận \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right]\) làm \(VTPT\).

    \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3} \Rightarrow d:\left\{ \begin{array}{l}x = 1 - 2t'\\y =  - 2 + t'\\z = 4 + 3t'\end{array} \right.\)

    Gọi \(M\) là giao điểm của \(d\) và \(d'\), khi đó \(\left\{ \begin{array}{l}1 - 2t' =  - 1 + t\\ - 2 + t' =  - t\\4 + 3t' =  - 2 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2t' + t = 2\\ - t' - t =  - 2\\ - 3t' + 3t = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t = 2\end{array} \right.\)

    Suy ra \(M\left( {1; - 2;4} \right)\).

    Ta có: \(\overrightarrow {{u_d}}  = \left( { - 2;1;3} \right),\overrightarrow {{u_{d'}}}  = \left( {1; - 1;3} \right)\) \( \Rightarrow \overrightarrow n  = \left[ {\overrightarrow {{u_d}} ;\overrightarrow {{u_{d'}}} } \right] = \left( {6;9;1} \right)\).

    Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {1; - 2;4} \right)\) và nhận \(\overrightarrow n  = \left( {6;9;1} \right)\) làm VTPT nên \(\left( P \right):6\left( {x - 1} \right) + 9\left( {y + 2} \right) + 1\left( {z - 4} \right) = 0 \Leftrightarrow 6x + 9y + z + 8 = 0\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 359892

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON