YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chữ nhật \(ABCD\) có \(AB = 2,\,\,AD = 2\sqrt 3 \) và nằm trong mặt phẳng \(\left( P \right)\). Quay \(\left( P \right)\) một vòng quanh đường thẳng \(BD\). Khối tròn xoay được tạo thành có thể tích bằng: 

    • A. \(\dfrac{{28\pi }}{9}\)        
    • B. \(\dfrac{{28\pi }}{3}\)      
    • C. \(\dfrac{{56\pi }}{9}\)   
    • D. \(\dfrac{{56\pi }}{3}\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    \(\Delta BCD\) vuông tại C có:

    \(BD = \sqrt {{2^2} + {{\left( {2\sqrt 3 } \right)}^2}}  = 4\); \(CI = \dfrac{{BC.CD}}{{BD}} = \dfrac{{2\sqrt 3 .2}}{4} = \sqrt 3 \) ; \(IB = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}  = 3,\,\) \(ID = 1\).

     \( \Rightarrow \,IO = OD - ID = 2 - 1 = 1\); \(\dfrac{{OM}}{{CD}} = \dfrac{{BO}}{{BC}} \Leftrightarrow \dfrac{{OM}}{2} = \dfrac{2}{{2\sqrt 3 }} \Rightarrow OM = \dfrac{2}{{\sqrt 3 }}\)

    Thể tích khối nón có đỉnh B và đáy là hình tròn tâm I bán kính IC bằng thể tích khối nón có đỉnh D và đáy là hình tròn tâm J bán kính JA bằng:

    \({V_1} = \dfrac{1}{3}.\pi .I{C^2}.IB = \dfrac{1}{3}.\pi .3.3 = 3\pi \)

    Thể tích khối nón cụt có hai đáy là hình tròn tâm I bán kính IC, hình tròn tâm O bán kính OM bằng thể tích khối nón cụt có hai đáy là hình tròn tâm J bán kính JA, hình tròn tâm O bán kính OM bằng:

    \({V_2} = \dfrac{{\pi .OI}}{3}\left( {I{C^2} + O{M^2} + IC.OM} \right) = \dfrac{{\pi .1}}{3}\left( {3 + \dfrac{4}{3} + \sqrt 3 .\dfrac{2}{{\sqrt 3 }}} \right) = \dfrac{{19\pi }}{3}\)

    Thể tích cần tìm là: \(V = 2\left( {{V_1} + {V_2}} \right) = 2.\left( {3\pi  + \dfrac{{19\pi }}{3}} \right) = \dfrac{{56\pi }}{3}\).

    Chọn: D

    ATNETWORK

Mã câu hỏi: 359946

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON