YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \({2^{\left| {\frac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}}\) . Khẳng định nào sau đây là đúng? 

    • A. Tổng các nghiệm của phương trình là một số nguyên  
    • B. Nghiệm của phương trình là các số vô tỉ         
    • C. Tích các nghiệm của phương trình là một số dương
    • D. Phương trình vô nghiệm

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có : \({2^{\left| {\dfrac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\dfrac{{28}}{3}x + 1} \right|}} = {2^{4\left( {{x^2} - 1} \right)}}\) \( \Leftrightarrow \left| {\dfrac{{28}}{3}x + 1} \right| = 4\left( {{x^2} - 1} \right)\,\,\,\left( {DK:\,\,\left[ \begin{array}{l}x \ge 1\\x \le  - 1\end{array} \right.} \right)\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\dfrac{{28}}{3}x + 1 = 4\left( {{x^2} - 1} \right){\mkern 1mu} }\\{\dfrac{{28}}{3}x + 1 = 4\left( {1 - {x^2}} \right){\mkern 1mu} }\end{array}} \right.\)

    \( \Leftrightarrow \left[ \begin{array}{l}12{x^2} - 28x - 15 = 0\\12{x^2} + 28x - 9 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7 + \sqrt {94} }}{6}\,\,\,\,\,\left( {tm} \right)\\x = \frac{{7 - \sqrt {94} }}{6}\,\,\,\,\,\left( {ktm} \right)\\x = \frac{{ - 7 + 2\sqrt {19} }}{6}\,\,\,\,\left( {ktm} \right)\\x = \frac{{ - 7 - 2\sqrt {19} }}{6}\,\,\,\,\left( {tm} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7 + \sqrt {94} }}{6}\\x = \frac{{ - 7 - 2\sqrt {19} }}{6}\end{array} \right.\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 359926

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON