YOMEDIA
NONE
  • Câu hỏi:

    Cho hai số phức \({z_1},\,\,{z_2}\) thỏa mãn các điều kiện \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) và \(\left| {{z_1} + 2{z_2}} \right| = 4\). Giá trị của \(\left| {2{z_1} - {z_2}} \right|\) bằng: 

    • A. \(2\sqrt 6 \)         
    • B. \(\sqrt 6 \)     
    • C. \(3\sqrt 6 \)  
    • D. \(8\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi M, N lần lượt là điểm biểu diễn của \({z_1},\,\,{z_2}\) trên mặt phẳng phức

    Do \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) \( \Rightarrow M,N\) thuộc đường tròn tâm O bán kính 2.

    Gọi P, Q, R lần lượt là điểm biểu diễn của \(2{z_2},\,\, - {z_2},\,\,2{z_1}\) trên mặt phẳng phức (như hình vẽ)

    Dựng các hình bình hành \(OMEP,\,\,ORFQ\).

    Ta có:   \(\left| {{z_1} + 2{z_2}} \right| = 4 \Rightarrow OE = 4\)

                \(\left| {2{z_1} - {z_2}} \right| = OF\)

    Tam giác OPE có:

    \(\cos \widehat P = \dfrac{{P{E^2} + P{O^2} - E{O^2}}}{{2.PE.PO}} = \dfrac{{{2^2} + {4^2} - {4^2}}}{{2.2.4}} = \dfrac{1}{4} \Rightarrow \cos \widehat {ROQ} = \dfrac{1}{4}\)

    \( \Rightarrow \cos \widehat {ORF} =  - \dfrac{1}{4}\)

    Tam giác ORF có: \(O{F^2} = O{R^2} + R{F^2} - 2.OR.RF.\cos \widehat {ORF} = {4^2} + {2^2} - 2.4.2.\dfrac{{ - 1}}{4} = 16 + 4 + 4 = 24\)

    \( \Rightarrow OF = 2\sqrt 6  \Rightarrow \left| {2{z_1} - {z_2}} \right| = 2\sqrt 6 \)

    Chọn: A

    ATNETWORK

Mã câu hỏi: 359943

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON