YOMEDIA
NONE
  • Câu hỏi:

    Cho tứ diện \(ABCD\) có \(AB = CD = 11m;BC = AD = 20m;BD = AC = 21m.\) Tính thể tích khối tứ diện \(ABCD.\) 

    • A. \(770{m^3}\) 
    • B. \(340{m^3}\)  
    • C. \(720{m^3}\) 
    • D. \(360{m^3}\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    Dựng hình hộp chữ nhật \(AMCN.PBQD\) như hình bên.  Khi đó tứ diện \(ABCD\) thỏa mãn \(AB = CD = 11m;BC = AD = 20m;BD = AC = 21m.\)

    Gọi các kích thước hình hộp chữ nhật là \(m;n;p\) . Gọi \(V = {V_{AMCN.PBQD}} = m.n.p\)

    Ta có: \({V_{PA{\rm{D}}B}} = {V_{MABC}} = {V_{QBC{\rm{D}}}} = {V_{NAC{\rm{D}}}} = \frac{1}{3}.ND.{S_{ACN}}\) \( = \frac{1}{3}.ND.\frac{1}{2}.AN.NC = \frac{1}{6}.ND.NA.NC = \frac{1}{6}m.n.p = \frac{1}{6}{V_{AMCN.PBQ{\rm{D}}}}\)

    Suy ra \({V_{PA{\rm{D}}B}} + {V_{MABC}} + {V_{QBC{\rm{D}}}} + {V_{NAC{\rm{D}}}} = \frac{1}{6}V + \frac{1}{6}V + \frac{1}{6}V + \frac{1}{6}V = \frac{2}{3}V\)  mà \({V_{PA{\rm{D}}B}} + {V_{MABC}} + {V_{QBC{\rm{D}}}} + {V_{NAC{\rm{D}}}} + {V_{ABCD}} = V\)

    Suy ra: \({V_{ABC{\rm{D}}}} = \frac{1}{3}V = m.n.p\)

    Xét các tam giác vuông \(APB;\,APD;PDB\), theo định lý Pytago ta có

    Ta có: \(\left\{ \begin{array}{l}{m^2} + {n^2} = B{D^2}\\{m^2} + {p^2} = A{D^2}\\{p^2} + {n^2} = A{B^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + {n^2} = {21^2}\\{m^2} + {p^2} = {20^2}\\{p^2} + {n^2} = {11^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + {n^2} + {p^2} = 481\\{m^2} + {n^2} = {21^2}\\{m^2} + {p^2} = {20^2}\\{p^2} + {n^2} = {11^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 6\sqrt {10} \\n = 9\\p = 2\sqrt {10} \end{array} \right.\)

    \({V_{ABC{\rm{D}}}} = \frac{1}{3}m.n.p = \frac{1}{3}.6\sqrt {10} .9.2\sqrt {10}  = 360{m^3}\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 359906

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON