YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị của tham số m để bất phương trình sau \({{\log }_{\frac{1}{2}}}\left( x-1 \right)>{{\log }_{\frac{1}{2}}}\left( {{x}^{3}}+x-m \right)\) có nghiệm.

    • A. \(m \in R\)
    • B. m < 2
    • C. \(m \le 2\)
    • D. Không tồn tại m.

    Lời giải tham khảo:

    Đáp án đúng: A

    Yêu cầu bài toán \(\Leftrightarrow \left\{ \begin{align} & x-1>0 \\ & x-1<{{x}^{3}}+x-m \\ \end{align} \right.\) có nghiệm \(\Leftrightarrow \left\{ \begin{align} & x>1 \\ & m<{{x}^{3}}+1=f(x) \\ \end{align} \right.\) có nghiệm.

    Khảo sát hàm y=f(x) trên khoảng \(\left( 1\,;+\infty \, \right)\), ta có \({{f}^{'}}\left( x \right)\,=\,3{{x}^{2}}\,>\,0\,;\,\forall \,x>\,1\).

    Bảng biến thiên sau:

    Từ BBT ta thấy để hệ có nghiệm ta có \(\forall m\in \mathbb{R}\)

    ATNETWORK

Mã câu hỏi: 271534

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON