YOMEDIA
NONE
  • Câu hỏi:

    Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.

    • A. \(\frac{1}{3}\)
    • B. \(\frac{7}{{12}}\)
    • C. \(\frac{2}{3}\)
    • D. \(\frac{4}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có \(I=\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}\text{d}x}=\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{2{{\cos }^{2}}x}\text{d}x}\)

    Đặt \(u=\sqrt{2+3\tan x}\Rightarrow {{u}^{2}}=2+3\tan x\Rightarrow 2u\text{d}u=\frac{3}{{{\cos }^{2}}x}\text{d}x\)

    Đổi cận \(x=0\Rightarrow u=\sqrt{2}\)

    \(x=\frac{\pi }{4}\Rightarrow u=\sqrt{5}\)

    Khi đó \(I=\frac{1}{3}\int\limits_{\sqrt{2}}^{\sqrt{5}}{{{u}^{2}}\text{d}u}=\frac{1}{9}\left. {{u}^{3}} \right|_{\sqrt{2}}^{\sqrt{5}}=\frac{5\sqrt{5}}{9}-\frac{2\sqrt{2}}{9}\)

    Do đó \(a=\frac{5}{9}, b=-\frac{2}{9}a=\frac{5}{9},\,\,b=-\frac{2}{9}\Rightarrow a+b=\frac{1}{3}\)

    ATNETWORK

Mã câu hỏi: 271535

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON