YOMEDIA
NONE
  • Câu hỏi:

    Hình vẽ dưới đây là đồ thị của hàm số \(y=f\left( x \right)\).

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y=\left| f\left( x+1 \right)+m \right|\) có 5 điểm cực trị?

    • A. 0
    • B. 3
    • C. 2
    • D. 1

    Lời giải tham khảo:

    Đáp án đúng: B

    Đồ thị của hàm số \(y=\left| f\left( x+1 \right)+m \right|\) được suy ra từ đồ thị \(\left( C \right)\) ban đầu như sau:

    + Tịnh tiến \(\left( C \right)\) sang trái một đơn vị, sau đó tịnh tiến lên trên (hay xuống dưới) m đơn vị. Ta được đồ thị \(\left( {{C}'} \right):y=f\left( x+1 \right)+m\).

    + Phần đồ thị \(\left( {{C}'} \right)\) nằm dưới trục hoành, lấy đối xứng qua trục Ox ta được đồ thị của hàm số \(y=\left| f\left( x+1 \right)+m \right|\).

    Ta được bảng biến thiên của của hàm số \(y=\left| f\left( x+1 \right)+m \right|\) như sau.

    Để hàm số \(y=\left| f\left( x+1 \right)+m \right|\) có 5 điểm cực trị thì đồ thị của hàm số \(\left( {{C}'} \right):y=f\left( x+1 \right)+m\) phải cắt trục Ox tại 2 hoặc 3 giao điểm.

    + TH1: Tịnh tiến đồ thị \(\left( {{C}'} \right):y=f\left( x+1 \right)+m\) lên trên. Khi đó \(\left\{ \begin{array}{l} m > 0\\ - 3 + m \ge 0\\ - 6 + m < 0 \end{array} \right. \Leftrightarrow 3 \le m < 6\)

    + TH2: Tịnh tiến đồ thị \(\left( {{C}'} \right):y=f\left( x+1 \right)+m\) xuống dưới. Khi đó \(\left\{ \begin{array}{l} m < 0\\ 2 + m \le 0 \end{array} \right. \Leftrightarrow m \le - 2\)

    Vậy có ba giá trị nguyên dương của m là 3;4;5.

    ATNETWORK

Mã câu hỏi: 271540

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON