YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -20;20 \right]\) để tồn tại các số thực x, y thỏa mãn đồng thời \({{e}^{3x+5y-10}}-{{e}^{x+3y-9}}=1-2x-2y\) và \(\log _{5}^{2}\left( 3x+2y+4 \right)-\left( m+6 \right){{\log }_{2}}\left( x+5 \right)+{{m}^{2}}+9=0\).

    • A. 22
    • B. 23
    • C. 19
    • D. 31

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \({{e}^{3x+5y-10}}-{{e}^{x+3y-9}}=1-2x-2y\)

    \(\Leftrightarrow {{e}^{3x+5y-10}}-{{e}^{x+3y-9}}=\left( x+3y-9 \right)-\left( 3x+5y-10 \right)\)

    \(\Leftrightarrow {{e}^{3x+5y-10}}+3x+5y-10={{e}^{x+3y-9}}+x+3y-9\)

    Xét hàm số \(f\left( t \right)={{e}^{t}}+t,\text{ }t\in \mathbb{R}\).

    Ta có: \({f}'\left( t \right)={{e}^{t}}+1>0,\text{ }\forall t\in \mathbb{R}.\) Suy ra hàm số \(f\left( t \right)\) luôn đồng biến trên \(\mathbb{R}\).

    \(\Rightarrow 3x+5y-10=x+3y-9\Leftrightarrow 2y=1-2x\).

    Thay vào phương trình thứ 2, ta được

    \(\begin{align} & \log _{5}^{2}\left( 3x+2y+4 \right)-\left( m+6 \right){{\log }_{2}}\left( x+5 \right)+{{m}^{2}}+9=0 \\ & \Leftrightarrow \log _{5}^{2}\left( x+5 \right)-\left( m+6 \right){{\log }_{2}}\left( x+5 \right)+{{m}^{2}}+9=0 \\ & \Leftrightarrow \,\log _{5}^{2}\left( x+5 \right)-\left( m+6 \right){{\log }_{2}}5.{{\log }_{5}}\left( x+5 \right)+{{m}^{2}}+9=0\,\left( 1 \right). \\ \end{align}\)

    Đặt \({{\log }_{5}}\left( x+5 \right)=t\text{ }\left( t\in \mathbb{R},\text{ }x>-5 \right)\). Khi đó phương trình (1) trở thành

    \({{t}^{2}}-{{\log }_{2}}5.\left( m+6 \right)t+{{m}^{2}}+9=0\) (2).

    Tồn tại x, y thỏa mãn yêu cầu bài toán khi và chỉ khi phương trình (2) có nghiệm nên \(\Delta ={{\left( m+6 \right)}^{2}}.\log _{2}^{2}5-4\left( {{m}^{2}}+9 \right)\ge 0\Leftrightarrow \left( \log _{2}^{2}5-4 \right){{m}^{2}}+12.\log _{2}^{2}5.m-36\left( 1-\log _{2}^{2}5 \right)\ge 0\).

    \( \Leftrightarrow \left[ \begin{array}{l} m \le {m_1}\\ m \ge {m_2} \end{array} \right.\) với \({{m}_{1}}\approx -43.91\) và \({{m}_{2}}\approx -2.58\)

    Do \(m\in \left[ -20;20 \right]\) và \(m\in \mathbb{Z}\) nên \(m\in \left\{ -2;-1;0;...;19;20 \right\}\).

    Vậy có 23 giá trị của m thỏa mãn yêu cầu bài toán.

    ATNETWORK

Mã câu hỏi: 271541

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON