-
Câu hỏi:
Tìm m để đường thẳng y=x+m cắt đồ thị hàm số \(y = \frac{x}{{x + 1}}\)tại hai điểm phân biệt.
- A. \(\left[ \begin{array}{l} m < 0\\ m > 4 \end{array} \right.\)
- B. \(m\in \mathbb{R}\)
- C. 0
- D. -4
Đáp án đúng: A
Xét phương trình hoành độ giao điểm:
\(\frac{x}{{x + 1}} = x + m \Rightarrow (x + 1)(x + m) = x(x \ne - 1) \Leftrightarrow {x^2} + mx + m = 0\)
Để phương trình có hai nghiệm phân biệt thì: \(\left\{ \begin{array}{l} \Delta > 0\\ f( - 1) \ne 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} {m^2} - 4m > 0\\ 1 - m + m \ne 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m < 0\\ m > 4 \end{array} \right.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ SỰ TƯƠNG GIAO GIỮA CÁC ĐỒ THỊ HÀM SỐ
- Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số y=(2x+m)/(x+1) cắt đường thẳng y=1-x tại hai điểm phân biệt
- Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số y = 2{x^3} - 3(m + 1){x^2} + 6mx - m - 1 cắt trục hoành tại ba điểm phân biệt đều có hoành độ dương
- Biết rằng đường thẳng d:y = - x + m luôn cắt đường cong y=(2x+1)/(x+2) tại hai điểm phân biệt A, B
- Tìm m để phương trình {x^3} - 3x - 1 = m có 3 nghiệm đôi một khác nhau
- Đồ thị của hàm số y = - {x^3} + 3{x}^2 + 2x - 1 và đồ thị của hàm số y = {x^2} - 2x - 1 có tất cả bao nhiêu điểm chung?
- Tìm số nghiệm của phương trình |f(x)|=1 trên đoạn [-2;2] biết hàm số y=f(x) liên tục trên [-2;2] và có đồ thị là đường cong như hình vẽ
- Số giao điểm của đồ thị hai hàm số y = {x^3} - 3{x^2} + 3x - 1) và (y = {x^2} - x - 1 là:
- Tất cả các giá trị của m để phương trình |f(x)|=m có hai nghiệm phân biệt biết hàm số y=f(x)=(ax+b)/(cx+d) có đồ thị như hình vẽ
- Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có đúng ba nghiệm thực phân biệt
- Tìm giá trị m để đường thẳng d:y = x + m cắt (C):y=2x-1/x-1 tại hai điểm phân biệt sao cho tam giác OAB vuông tại A hoặc B