-
Câu hỏi:
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ bên. Tất cả các giá trị của m để phương trình \(\left| {f\left( x \right)} \right| = m\) có hai nghiệm phân biệt là:
- A. \(m \ge 2\) và \(m \le 1\)
- B. \(0 < m < 1\)
- C. \(m > 2\) và \(m < 1\)
- D. \(0 < m < 1\) và \(m > 1\)
Đáp án đúng: D
Đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) gồm 2 phần
Phần 1: Lấy phần của (C) nằm trên Ox.
Phần 2: Lấy đối xứng phần đồ thị (C) dưới trục Ox qua Ox.
Dựa vào đồ thị ta thấy \(\left| {f\left( x \right)} \right| = m\) có 2 nghiệm khi và chỉ khi \(m > 1\) hoặc \(0 < m < 1.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ SỰ TƯƠNG GIAO GIỮA CÁC ĐỒ THỊ HÀM SỐ
- Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có đúng ba nghiệm thực phân biệt
- Tìm giá trị m để đường thẳng d:y = x + m cắt (C):y=2x-1/x-1 tại hai điểm phân biệt sao cho tam giác OAB vuông tại A hoặc B
- Các giá trị m để đường thẳng y = m cắt đồ thị hàm số y = (1/2){x^4} - {x^2} + 3 tại 4 điểm phân biệt là:
- Tìm số giao điểm n của đồ thị hàm số y = x^2|x^2-3| và đường thẳng y = 2
- Biết rằng đường thẳng d: - 3x + m cắt đồ thị (C) y=2x+1/x−1 tại hai điểm phân biệt A và B sao cho trọng tâm tam giác OAB thuộc đồ thị (C)
- Tìm tất cả các giá trị thực của tham số m để phương trình {x^3} - 3x = {m^2} + m có ba nghiệm phân biệt.
- Tìm số giao điểm của đồ thị hàm số y = sqrt {{x^2} - 4} + 5 và đường thẳng y = x.
- Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = {x^2} + mleft( {sqrt {4 - {x^2}} + 1} ight) - 7.
- Cho hàm số y = {x^3} - 6{x^2} + 9x + m (m là tham số thức) có đồ thị (C). Giả sử (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ x_1, x_2, x_3
- Cho hàm số y = fleft( x ight) xác định trên mathbb{R}ackslash left{ 1 ight}, liên tục trên từng khoảng