-
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau:
Tìm tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực phân biệt.
- A. \(\left[ { - 4;2} \right).\)
- B. \(\left( { - 4;2} \right).\)
- C. \(\left( { - \infty ;2} \right].\)
- D. \(\left( { - 4;2} \right].\)
Đáp án đúng: B
Để phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực phân biệt khi và chỉ khi đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại ba điểm phân biệt.
Dựa vào bảng biến thiên ta có điều kiện \( - 4 < m < 2\).
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ SỰ TƯƠNG GIAO GIỮA CÁC ĐỒ THỊ HÀM SỐ
- Tìm giá trị m để đường thẳng d:y = x + m cắt (C):y=2x-1/x-1 tại hai điểm phân biệt sao cho tam giác OAB vuông tại A hoặc B
- Các giá trị m để đường thẳng y = m cắt đồ thị hàm số y = (1/2){x^4} - {x^2} + 3 tại 4 điểm phân biệt là:
- Tìm số giao điểm n của đồ thị hàm số y = x^2|x^2-3| và đường thẳng y = 2
- Biết rằng đường thẳng d: - 3x + m cắt đồ thị (C) y=2x+1/x−1 tại hai điểm phân biệt A và B sao cho trọng tâm tam giác OAB thuộc đồ thị (C)
- Tìm tất cả các giá trị thực của tham số m để phương trình {x^3} - 3x = {m^2} + m có ba nghiệm phân biệt.
- Tìm số giao điểm của đồ thị hàm số y = sqrt {{x^2} - 4} + 5 và đường thẳng y = x.
- Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = {x^2} + mleft( {sqrt {4 - {x^2}} + 1} ight) - 7.
- Cho hàm số y = {x^3} - 6{x^2} + 9x + m (m là tham số thức) có đồ thị (C). Giả sử (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ x_1, x_2, x_3
- Cho hàm số y = fleft( x ight) xác định trên mathbb{R}ackslash left{ 1 ight}, liên tục trên từng khoảng
- Biết đường thẳng y = 3x + 4) cắt đồ thị hàm số (y = frac{{4x + 2}}{{x - 1}} tại hai điểm phân biệt có tung