-
Câu hỏi:
Cho hàm số \(y = {x^4} - 3{x^2} + m,\) có đồ thị \(\left( {{C_m}} \right),\) với m là tham số thực. Giả sử \(\left( {{C_m}} \right)\) cắt trục Ox tại bốn điểm phân biệt như hình vẽ. Gọi \({S_1};{S_2};{S_3}\) là diện tích các miền gạch chéo như hình vẽ. Tìm m để \({S_1} + {S_2} = {S_3}.\)
- A. \(m = - \frac{5}{2}\)
- B. \(m = - \frac{5}{4}\)
- C. \(m = \frac{5}{2}\)
- D. \(m = \frac{5}{4}\)
Đáp án đúng: D
Phương trình hoành độ giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} + m\)với trục hoành là:
\({x^4} - 3{x^2} + m = 0\)
Đặt \(t = {x^2},t > 0\) ta có: \({t^2} - 3t + m = 0(2)\)
\(({C_m})\) cắt trục hoành tại 4 điểm phân biệt khi và chỉ khi phương trình \((2)\) có hai nghiệm dương phân biệt:
\(\left\{ \begin{array}{l}\Delta > 0\\P > 0\\S > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}9 - 4m > 0\\3 > 0\\m > 0\end{array} \right. \Leftrightarrow 0 < m < \frac{9}{4}\)
Đến đây ta có thể suy ra D là phương án đúng.
Nhận xét: Trong trường hợp bài này người ra đề đưa ra 4 phương án A, B, C, D. Khi sử dụng ngay dữ kiến đầu tiên ta có thể chọn được phương án đúng.
Nếu trường hợp đến đấy vẫn chưa chọn được phương án đúng, ta xét tiếp như sau.
Ta có: \(y = f(x) = {x^4} - 3{x^2} + m\)là hàm số chẵn nên ta có: \({S_1} + {S_2} = {S_3} \Rightarrow {S_2} = \frac{1}{2}{S_3}\)
Gọi \({x_1} < {x_2} < {x_3} < {x_4}\) là 4 hoành độ giao điểm của \(({C_m})\) với trục hoành suy ra:
\({S_2} = \frac{1}{2}{S_3} \Rightarrow \int\limits_{{x_3}}^{{x_4}} { - f(x)dx} = \int\limits_0^{{x_3}} {f(x)dx} \)
Từ đó ta có thể giải và tìm được m.
Tuy nhiên với bài toán này các nghiệm \({x_1},{x_2},{x_3},{x_4}\) tính theo m có công thức rất phức tạp, không phù hợp với một bài trắc nghiệm. Có lẻ vì vậy tác giả đã đơn giản hóa bài toán từ việc đưa ra 4 phương án A, B, C, D nhứ trên. Bản chất bài toán chỉ còn là: “Tìm tham số m để đồ thị hàm số \(y = {x^4} - 3{x^2} + m\)cắt trục hoành tại bốn điểm phân biệt”.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Cho hình phẳng (H) giới hạn bởi các đường y = 4 - {x^2},y = 0. Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox.
- Tính diện tích hình phẳng (H) giới hạn bởi các đường: Parabol (P): y=x^2−2x+2, tiếp tuyến của (P) tại M(3;5) và trục Oy.
- Tính thể tích V của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số y = fleft( x ight)
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f(x)=x^2−4x+3 và trục Ox.
- Người ta dựng một cái lều vải (H) có dạng hình chóp lục giác đều như hình vẽ bên. Đáy của (H) là một hình lục giác đều có độ dài cạnh là 3m. Chiều cao SO=6m (SO vuông góc với mặt đáy).
- Cho hàm số y=f(x) có đạo hàm f′(x) liên tục trên R và đồ thị của hàm số f′(x) trên đoạn [−2;6] như hình vẽ bên.
- Bên trong hình vuông cạnh a, dựng hình sao cho bốn cạnh đều như hình vẽ bên. Tính thể tích khối tròn xoay sinh ra khi quay hình sao đó quanh Ox
- Trong mặt phẳng tọa độ, cho hình chữ nhật (H) có một cạnh nằm trên trục hoành, và có hai đỉnh trên một
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = left( {x - 1} ight){e^x}, trục Ox và đường thẳng x = 2
- Gọi V là thể tích vật tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số sqrt {frac{{ln { m{x}}}}{{x{{left