-
Chọn đáp án A
Số vòng bánh xe quay được trong 1 s là \(f = \frac{{100}}{4} = 25\) Hz.
Có \(f = \frac{\omega }{{2\pi }} = 25 \Rightarrow \omega = 50\pi \) (rad/s).
Câu hỏi:Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị của hàm số \({f'}\left( x \right)\) trên đoạn \(\left[ { - 2;6} \right]\) như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau.
- A. \(\mathop {ma{\rm{x}}}\limits_{\left[ { - 2;6} \right]} f\left( x \right) = f\left( { - 2} \right).\)
- B. \(\mathop {ma{\rm{x}}}\limits_{\left[ { - 2;6} \right]} f\left( x \right) = f\left( 2 \right).\)
- C. \(\mathop {ma{\rm{x}}}\limits_{\left[ { - 2;6} \right]} f\left( x \right) = f\left( 6 \right).\)
- D. \(\mathop {ma{\rm{x}}}\limits_{\left[ { - 2;6} \right]} f\left( x \right) = f\left( { - 1} \right).\)
Đáp án đúng: C
Từ đồ thị hàm số \(y = f'(x)\) ta lập được bảng biến thiên như sau:
Vậy hàm số chỉ có thể đạt giá trị lớn nhất tại x=-1 hoặc x=6.
Ta có:
\({S_1} = \int\limits_{ - 1}^2 {\left| {f'\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 1}^2 {f'\left( x \right)d{\rm{x}}} = f\left( { - 1} \right) - f\left( 2 \right) = {S_1} \Rightarrow f\left( { - 1} \right) = {S_1} + f\left( 2 \right)\)
\({S_2} = \int\limits_2^6 {\left| {f'\left( x \right)} \right|d{\rm{x}}} = \int\limits_2^6 {f'\left( x \right)d{\rm{x}}} = f\left( 6 \right) - f\left( 2 \right) = {S_2} \Rightarrow f\left( 6 \right) = {S_2} + f\left( 2 \right).\)
Dựa vào hình vẽ ta thấy \({S_2} > {S_1} \Rightarrow f\left( 6 \right) > f\left( { - 1} \right).\)
Vậy: \(\mathop {ma{\rm{x}}}\limits_{\left[ { - 2;6} \right]} f\left( x \right) = f\left( 6 \right).\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Bên trong hình vuông cạnh a, dựng hình sao cho bốn cạnh đều như hình vẽ bên. Tính thể tích khối tròn xoay sinh ra khi quay hình sao đó quanh Ox
- Trong mặt phẳng tọa độ, cho hình chữ nhật (H) có một cạnh nằm trên trục hoành, và có hai đỉnh trên một
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = left( {x - 1} ight){e^x}, trục Ox và đường thẳng x = 2
- Gọi V là thể tích vật tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số sqrt {frac{{ln { m{x}}}}{{x{{left
- Một cái chuông có dạng như hình vẽ.
- Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y=ax^3(a>0), trục hoành và hai đường thẳng x=−1, x=k (k>0) bằng 17a/4.
- Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với A(−1;2), B(5;5), C(5;0), D(−1;0). Quay hình thang ABCD xung quanh trục Ox thì thể tích khối nón tròn xoay tạo thành là bao nhiêu?
- Cho mặt phẳng (H) giới hạn bởi đồ thị hàm số y = sqrt x ,y = x - 2 và trục hoành. Tìm công thức tính thể tích của vật thể tròn xoay sinh ra khi cho hình (H) quay quanh trục hoành.
- Phần trồng hoa có dạng của một cánh hoa hình parabol có đỉnh trùng với tâm nửa hình tròn và hai đầu mút của cánh hoa nằm trên nửa đường tròn cách nhau 4m
- Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t)=−5t+a(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.