YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu cặp số nguyên \(\left( x;y \right)\) thỏa mãn \(0<y\le 2021\) và \({{3}^{x}}+3x-6=9y+{{\log }_{3}}{{y}^{3}}\)?

    • A. 2021
    • B. 7
    • C. 9
    • D. 2020

    Lời giải tham khảo:

    Đáp án đúng: B

    ${{3}^{x}}+3x-6=9y+{{\log }_{3}}{{y}^{3}}\Rightarrow {{3}^{x}}+3\left( x-1 \right)=9y+3{{\log }_{3}}y+3$

    $\Rightarrow {{3}^{x}}+3\left( x-1 \right)=9y+3{{\log }_{3}}\left( 3y \right)\Rightarrow $\[{{3}^{x-1}}+\left( x-1 \right)=3y+{{\log }_{3}}\left( 3y \right)\].

    Đặt ${{3}^{x-1}}=u\Rightarrow x-1={{\log }_{3}}u\,,\left( u>0 \right)$, suy ra: \[u+{{\log }_{3}}u=3y+{{\log }_{3}}\left( 3y \right)\]. $\left( * \right)$

    Xét hàm số $f\left( t \right)=t+{{\log }_{3}}t$ trên $\left( 0;+\infty  \right)$.

    Ta có: ${f}'\left( t \right)=1+\frac{1}{t\ln 3}>0$, $\forall t>0$ nên từ $\left( * \right)$ suy ra:

    $\left( * \right)$$\Leftrightarrow f\left( u \right)=f\left( 3y \right)\Leftrightarrow u=3y$

    Khi đó ta có: $3y={{3}^{x-1}}\Leftrightarrow y={{3}^{x-2}}$ $\left( ** \right)$

    Theo giả thiết: \(\left\{ \begin{array}{l} y \in Z\\ 0 < y \le 2021 \end{array} \right. \Rightarrow 1 \le y \le 2021\), suy ra:

    \(\left\{ \begin{array}{l} x \in Z\\ 1 \le {3^{x - 2}} \le 2021 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \in Z\\ 0 \le x - 2 \le {\log _3}2021 \approx 6,928 \end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l} x \in Z\\ 0 \le x - 2 \le 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \in Z\\ 2 \le x \le 8 \end{array} \right. \Rightarrow x \in \left\{ {2;3;4;5;6;7;8} \right\}\) (có 7 số)

    Từ (**) ta có, ứng với mỗi giá trị của x, cho duy nhất một giá trị của y nên có 7 cặp.

    ATNETWORK

Mã câu hỏi: 261780

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON