YOMEDIA
NONE
  • Câu hỏi:

    Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có tất cả các cạnh bằng a. Gọi M là trung điểm của AA' (tham khảo hình vẽ).

    Khoảng cách từ M đến mặt phẳng \(\left( A{B}'C \right)\) bằng

    • A. \(\frac{{a\sqrt 2 }}{4}\)
    • B. \(\frac{{a\sqrt {21} }}{7}\)
    • C. \(\frac{{a\sqrt 2 }}{2}\)
    • D. \(\frac{{a\sqrt {21} }}{{14}}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Trong \(\left( AB{B}'{A}' \right)\), gọi E là giao điểm của BM và \(A{B}'\). Khi đó hai tam giác EAM và \(E{B}'B\) đồng dạng. Do đó \(\frac{d\left( M,\left( A{B}'C \right) \right)}{d\left( B,\left( A{B}'C \right) \right)}=\frac{EM}{EB}=\frac{MA}{B{B}'}=\frac{1}{2}\Rightarrow d\left( M,\left( A{B}'C \right) \right)=\frac{1}{2}\cdot d\left( B,\left( A{B}'C \right) \right)\).

    Từ B kẻ \(BN\bot AC\) thì N là trung điểm của AC và \(BN=\frac{a\sqrt{3}}{2}, B{B}'=a\).

    Kẻ \(BI\bot {B}'N\) thì \(d\left( B,\left( A{B}'C \right) \right)=BI=\frac{B{B}'\cdot BN}{\sqrt{B{{{{B}'}}^{2}}+B{{N}^{2}}}}=\frac{a\sqrt{21}}{7}\).

    Vậy \(d\left( M,\left( A{B}'C \right) \right)=\frac{1}{2}\cdot d\left( B,\left( A{B}'C \right) \right)=\frac{a\sqrt{21}}{14}\).

    ATNETWORK

Mã câu hỏi: 261776

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON