YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}\left( x+3 \right)\left( {{x}^{2}}+2mx+5 \right)\) với mọi \(x\in \mathbb{R}\). Có bao nhiêu giá trị nguyên âm của tham số m để hàm số \(g\left( x \right)=f\left( \left| x \right| \right)\) có đúng một điểm cực trị

    • A. 3
    • B. 5
    • C. 4
    • D. 2

    Lời giải tham khảo:

    Đáp án đúng: D

    \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {x + 3} \right)\left( {{x^2} + 2mx + 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = - 3\\ {x^2} + 2mx + 5 = 0{\rm{ }}\left( 1 \right) \end{array} \right.\)

    Để hàm số \(y=g\left( x \right)\) có đúng 1 điểm cực trị

    \(\Leftrightarrow \) khi hàm số \(y=f\left( x \right)\) không có điểm cực trị nào thuộc khoảng \(\left( 0;+\infty  \right)\).

    Trường hợp 1: Phương trình \(\left( 1 \right)\) vô nghiệm hoặc có nghiệm kép

    \(\Leftrightarrow {{m}^{2}}-5\le 0\Leftrightarrow -\sqrt{5}\le m\le \sqrt{5}\) (*)

    Trường hợp 2: Phương trình \(\left( 1 \right)\) có hai nghiệm \({{x}_{1}},{{x}_{2}}\) phân biệt thoả mãn \({{x}_{1}}<{{x}_{2}}\le 0\)

    \( \Leftrightarrow \left\{ \begin{array}{l} {m^2} - 5 > 0\\ - 2m < 0\\ 5 > 0 \end{array} \right. \Leftrightarrow m > \sqrt 5 \) (**)

    Từ (*) và (**) suy ra \(m\ge -\sqrt{5}\). Vì m là số nguyên âm nên: \(m=\left\{ -2;-1 \right\}\)

    ATNETWORK

Mã câu hỏi: 261794

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON