YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y=f\left( x \right)\) có đồ thị \(y={f}'\left( x \right)\) ở hình vẽ bên. Xét hàm số \(g\left( x \right)=f\left( x \right)-\frac{1}{3}{{x}^{3}}-\frac{3}{4}{{x}^{2}}+\frac{3}{2}x+2021,\) mệnh đề nào dưới đây đúng?

    • A. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 1} \right)\)
    • B. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = \frac{{g\left( { - 3} \right) + g\left( 1 \right)}}{2}\)
    • C. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 3} \right)\)
    • D. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( 1 \right)\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có \({g}'\left( x \right)={f}'\left( x \right)-{{x}^{2}}-\frac{3}{2}x+\frac{3}{2}={f}'\left( x \right)-\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\).

    Vẽ parabol \(\left( P \right):y={{x}^{2}}+\frac{3}{2}x-\frac{3}{2}\). Ta thấy \(\left( P \right)\) đi qua các điểm có toạ độ \(\left( -3\,;3 \right),\left( -1\,;2 \right), \left( 1\,;1 \right)\).

    + Trên khoảng \(\left( -3\,;-1 \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía dưới \(\left( P \right)\) nên

     \({f}'\left( x \right)<\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)<0\).

    + Trên khoảng \(\left( -1\,;1 \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía trên \(\left( P \right)\) nên

    \({f}'\left( x \right)>\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)>0\).

    + Trên khoảng \(\left( 1\,;+\infty  \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía dưới \(\left( P \right)\) nên

    \({f}'\left( x \right)<\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)<0\).

    Bảng biến thiên

    Từ bảng biến thiên, ta có \(\underset{\left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\).

    ATNETWORK

Mã câu hỏi: 261779

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON