YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(y={f}'\left( x \right)\) có bảng biến thiên như hình vẽ

    Có bao nhiêu số tự nhiên n sao cho \(\ln \left( f\left( x \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+9x+m \right)>n\) có nghiệm với \(x\in \left( -1;3 \right)\) và \(m\in \left[ 0;13 \right]\)

    • A. 3
    • B. 2
    • C. 5
    • D. 7

    Lời giải tham khảo:

    Đáp án đúng: A

    ĐK \(\ln \left( f\left( x \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+9x+m \right)>n\) xác định trên \(\mathbb{R}\)

    \(\Leftrightarrow g\left( x \right)=f\left( x \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+9x+m>0, \forall x\in \left( -1;3 \right)\)

    \(\Rightarrow g'\left( x \right)=f'\left( x \right)+{{x}^{2}}-6x+9\Rightarrow g'\left( x \right)=0\Leftrightarrow f'\left( x \right)=-{{x}^{2}}+6x-9\)

    Vẽ hai đồ thị \(y=f'\left( x \right)\) và \(y=-{{x}^{2}}+6x-9\) trên cùng hệ trục

    Suy ra \(g'\left( x \right)\ge 0, \forall x\in \left( -1;3 \right) \Rightarrow g\left( x \right)>g\left( -1 \right)=-\frac{37}{3}+m\ge 0\Leftrightarrow m\ge \frac{37}{3}\)

    Xét hàm số \(y=\ln \left( f\left( x \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+9x+m \right)\Rightarrow y'=\frac{f'\left( x \right)+{{x}^{2}}-6x+9}{f\left( x \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+9x+m}\ge 0\)

    Suy ra \(y=\ln \left( f\left( x \right)+\frac{1}{3}{{x}^{3}}-3{{x}^{2}}+9x+m \right)\) đồng biến \(\left( -1;3 \right)\)

    Để bpt có nghiệm trên \(\left( -1;3 \right)\) thì \(y\left( -1 \right)\le n<y\left( 3 \right) \Leftrightarrow \ln \left( m-\frac{37}{3} \right)\le n<\ln \left( m+9 \right)\)

    \(\Leftrightarrow m-\frac{37}{3}\le {{e}^{n}}<m+9\).

    Do \(m\in \left[ \frac{37}{3};13 \right]\) nên n=0;1;2.

    ATNETWORK

Mã câu hỏi: 261790

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON