YOMEDIA
NONE
  • Câu hỏi:

    Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau và OA = 2a, OC = 3a, OC = 8a . M là trung điểm của OC Tính thể tích V của khối tứ diện O.ABM.

    • A. \(V = 8{a^3}\)
    • B. \(V = 6{a^3}\)
    • C. \(V = 4{a^3}\)
    • D. \(V = 3{a^3}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \({S_{OBM}} = \frac{1}{2}OM.OB = \frac{1}{2}4a.3a = 6{a^2}\).

    Vậy thể tích \({V_{O.ABM}} = {V_{A.OBM}} = \frac{1}{3}{S_{OBM}}.OA = \frac{1}{3}.6{a^2}.2a = 4{a^3}.\)

    ATNETWORK

Mã câu hỏi: 52589

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON