YOMEDIA
NONE
  • Câu hỏi:

    Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a,\) \(O\) là trọng tâm tam giác \(ABC\) và \(A'O = \dfrac{{2a\sqrt 6 }}{3}.\) Thể tích của khối lăng trụ \(ABC.A'B'C'\) bằng  

    • A. \(2{a^3}.\)   
    • B. \(2{a^3}\sqrt 3 .\)  
    • C. \(\dfrac{{4{a^3}}}{3}.\) 
    • D. \(\dfrac{{2{a^3}}}{3}.\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(E\) là trung điểm của \(BC.\)

    Vì \(ABC\) là tam giác đều cạnh \(2a\) nên \(AE = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \)

    Vì \(O\) là trọng tâm tam giác \(ABC\) nên \(AO = \dfrac{2}{3}.AE = \dfrac{2}{3}.a\sqrt 3  = \dfrac{{2a\sqrt 3 }}{3}\)

    Xét tam giác \(AOA'\) vuông tại \(A\) nên \(AA' = \sqrt {A'{O^2} - A{O^2}}  = \sqrt {{{\left( {\dfrac{{2a\sqrt 6 }}{3}} \right)}^2} - {{\left( {\dfrac{{2a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{2a\sqrt 3 }}{3}\)

    Diện tích đáy \({S_{ABC}} = \dfrac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

    Thể tích lăng trụ \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = \dfrac{{2a\sqrt 3 }}{3}.{a^2}\sqrt 3  = 2{a^3}.\)

    Chọn A.

    ATNETWORK

Mã câu hỏi: 357373

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON