YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = f(x)\) có bảng biến thiên trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ. Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {3\sin x + 2} \right) = m\) có đúng 3 nghiệm phân biệt trên khoảng \(\left( { - \dfrac{\pi }{2};\pi } \right)\)? 

    • A. 7
    • B. 4
    • C. 6
    • D. 5

    Lời giải tham khảo:

    Đáp án đúng: D

    Đặt \(\sin x = t\) (\( - 1 \le t \le 1 \Rightarrow  - 1 \le 3t + 2 \le 5\)).

    Phương trình đã cho có đúng \(3\) nghiệm phân biệt thuộc khoảng \(\left( { - \dfrac{\pi }{2};\pi } \right)\) \( \Leftrightarrow \) phương trình \(f\left( {3t + 2} \right) = m\) có đúng hai nghiệm \({t_1},{t_2}\) thỏa mãn \( - 1 < {t_1} \le 0 < {t_2} < 1\) hoặc \(0 < {t_2} < 1 = {t_1}\).

    Đặt \(u = 3t + 2\left( { - 1 \le u \le 5} \right)\) thì bài toán trở thành tìm \(m\) để phương trình \(f\left( u \right) = m\) có có đúng hai nghiệm  thỏa mãn \( - 1 < {u_1} \le 2 < {u_2} < 5\) hoặc \(2 < {u_2} < 5 = {u_1}\).

     

    +) TH1: Phương trình \(f\left( u \right) = m\) có đúng hai nghiệm thỏa mãn \( - 1 < {u_1} \le 2 < {u_2} < 5\).

    Dựa vào bảng biến thiên ta thấy \( - 1 < m < 4\).

    +) TH2: Phương trình \(f\left( u \right) = m\) có đúng hai nghiệm thỏa mãn \(2 < {u_2} < 5 = {u_1}\).

    Dựa vào bảng biến thiên ta thấy \(4 < m \le 5\).

    Do đó \(m \in \left( { - 1;4} \right) \cup \left( {4;5} \right]\). Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ {0;1;2;3;5} \right\}\) và có \(5\) giá trị của \(m\) thỏa mãn.

    Chọn D.

    ATNETWORK

Mã câu hỏi: 357470

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON