YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp tứ giác đều \(S.ABCD\) cạnh đáy bằng \(a.\) Gọi \(E\) là điểm đối xứng với \(D\) qua trung điểm của \({\rm{S}}A;\)\(M,N\)lần lượt là trung điểm \(AE,BC.\) Khoảng cách giữa hai đường thẳng \(MN,\;SC\) bằng 

    • A. \(\dfrac{{a\sqrt 2 }}{4}.\)  
    • B. \(\dfrac{{a\sqrt 2 }}{2}.\)   
    • C. \(\dfrac{{a\sqrt 3 }}{4}.\)    
    • D. \(\dfrac{{a\sqrt 3 }}{2}.\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Gắn hệ trục tọa độ như hình vẽ, giả sử \(SO = b\) ta có: \(OC = OD = OA = OB = \dfrac{{a\sqrt 2 }}{2}\) \( \Rightarrow C\left( {\dfrac{{a\sqrt 2 }}{2};0;0} \right),D\left( {0;\dfrac{{a\sqrt 2 }}{2};0} \right),A\left( { - \dfrac{{a\sqrt 2 }}{2};0;0} \right),\)\(B\left( {0; - \dfrac{{a\sqrt 2 }}{2};0} \right),S\left( {0;0;b} \right)\).

    Gọi \(K\) trung điểm \(SA\) thì \(K\left( { - \dfrac{{a\sqrt 2 }}{4};0;\dfrac{b}{2}} \right)\), \(E\) đối xứng với \(D\) qua \(K\) nên \(E\left( { - \dfrac{{a\sqrt 2 }}{2}; - \dfrac{{a\sqrt 2 }}{2};b} \right)\).

    \(M\) là trung điểm của \(AE \Rightarrow M\left( { - \dfrac{{a\sqrt 2 }}{2}; - \dfrac{{a\sqrt 2 }}{4};\dfrac{b}{2}} \right)\).

    \(N\) là trung điểm của \(BC \Rightarrow N\left( {\dfrac{{a\sqrt 2 }}{4}; - \dfrac{{a\sqrt 2 }}{4};0} \right)\).

    Ta có: \(\overrightarrow {MN}  = \left( {\dfrac{{3a\sqrt 2 }}{4};0; - \dfrac{b}{2}} \right),\overrightarrow {SC}  = \left( {\dfrac{{a\sqrt 2 }}{2};0; - b} \right),\overrightarrow {SN}  = \left( {\dfrac{{a\sqrt 2 }}{4}; - \dfrac{{a\sqrt 2 }}{4}; - b} \right)\)

    \( \Rightarrow \left[ {\overrightarrow {MN} ,\overrightarrow {SC} } \right] = \left( {0;\dfrac{{ab\sqrt 2 }}{2};0} \right)\)

    Suy ra \(d\left( {MN,SC} \right) = \dfrac{{\left| {\left[ {\overrightarrow {MN} ,\overrightarrow {SC} } \right].\overrightarrow {SN} } \right|}}{{\left| {\left[ {\overrightarrow {MN} ,\overrightarrow {SC} } \right]} \right|}} = \dfrac{{\left| {0 - \dfrac{{{a^2}b}}{4} + 0} \right|}}{{\sqrt {0 + \dfrac{{2{a^2}{b^2}}}{4} + b} }} = \dfrac{{a\sqrt 2 }}{4}\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 357390

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON