YOMEDIA
NONE
  • Câu hỏi:

    Cho đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{2}\) và hai điểm \(A\left( {2;0; - 3} \right),B\left( {2; - 3;1} \right).\) Đường thẳng \(\Delta \) qua \(A\) và cắt \(d\) sao cho khoảng cách từ \(B\) đến \(\Delta \) nhỏ nhất. Phương trình của \(\Delta \) là 

    • A. \(\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 1}}{2}.\)  
    • B. \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z - 1}}{{ - 2}}.\) 
    • C. \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)
    • D. \(\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z + 1}}{2}.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi \(C\left( {1 + t;1 + 2t;1 + 2t} \right)\) là giao điểm của \(\Delta \) và \(d\). Khi đó \(\overrightarrow {AC}  = \left( {t - 1;2t + 1;2t + 4} \right)\).

    \(\overrightarrow {BA}  = \left( {0;3; - 4} \right),\overrightarrow {AC}  = \left( {t - 1;2t + 1;2t + 4} \right) \Rightarrow \left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right] = \left( {14t + 16; - 4t + 4; - 3t + 3} \right)\)

    \(d\left( {B,\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right]} \right|}}{{\left| {\overrightarrow {AC} } \right|}} = \dfrac{{\sqrt {{{\left( {14t + 16} \right)}^2} + {{\left( { - 4t + 4} \right)}^2} + {{\left( { - 3t + 3} \right)}^2}} }}{{\sqrt {{{\left( {t - 1} \right)}^2} + {{\left( {2t + 1} \right)}^2} + {{\left( {2t + 4} \right)}^2}} }}\)

    Dùng MTCT (chức năng TABLE) nhập hàm \(f\left( x \right) = \dfrac{{{{\left( {14x + 16} \right)}^2} + {{\left( { - 4x + 4} \right)}^2} + {{\left( { - 3x + 3} \right)}^2}}}{{{{\left( {x - 1} \right)}^2} + {{\left( {2x + 1} \right)}^2} + {{\left( {2x + 4} \right)}^2}}}\)

    Bước START nhập \( - 5\), bước END nhập \(5\) và bước STEP nhập \(1\).

    Ta được kết quả \(f\left( x \right)\) min tại \(x =  - 1\) hay \(d\left( {B,\Delta } \right)\) min khi \(t =  - 1\).

    Từ đó \(C\left( {0; - 1; - 1} \right)\) và \(\overrightarrow {CA}  = \left( {2;1; - 2} \right)\) nên \(AC\) có phương trình \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)

    Chọn C.

    ATNETWORK

Mã câu hỏi: 357472

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON