-
Câu hỏi:
Cho khối tứ diện đều ABCD có cạnh bằng a. Gọi B’, C’ lần lượt là trung điểm của các cạnh AB và AC. Tính thể tích V của khối tứ diện AB’C’D theo a.
- A. \(V = \frac{{{a^3}\sqrt 3 }}{{48}}\)
- B. \(V = \frac{{{a^3}\sqrt 2 }}{{48}}\)
- C. \(V = \frac{{{a^3}}}{{24}}\)
- D. \(V = \frac{{{a^3}\sqrt 2 }}{{24}}\)
Đáp án đúng: A
Khối tứ diện đều ABCD có cạnh bằng a có thể tích là \(V = \frac{{{a^3}\sqrt 2 }}{{12}}\)
Ta có: \(\frac{{{V_{AB'C'D'}}}}{{{V_{ABCD}}}} = \frac{{AB'}}{{AB}}.\frac{{AC'}}{{AC}}.\frac{{AD}}{{AD}} = \frac{1}{4} \Rightarrow {V_{AB'C'D}} = \frac{{{a^3}\sqrt 3 }}{{48}}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN GIÁN TIẾP
- Cho hình hộp ABCDA’B’C’D’ có tất cả các cạnh bằng a, các cạnh xuất phát từ đỉnh A của hình hộp đôi một tạo với nhau một góc 60 độ
- Cho hình chóp đều S.ABC có đáy bằng a, góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60 độ A’; B’; C’ tương ứng là các điểm đối xứng của A; B; C qua S
- Cho hình lập phương ABCD. A’B’C’D’ cạnh a tính thể tích khối tứ diện ACB’D’
- Cho hình chóp S.ABCD có đáy là hình thang vuông cân tại A và D AB=2a AD=DC=a cạnh bên SA vuông góc với đáy và SA=2a M, N là trung điểm của SA và SB
- Cho hình chóp S.ABCD có thể tích bằng 48 và ABCD là hình thoi các điểm M, N, P, Q lần lượt là các điểm trên các đoạn SA, SB, SC, SD thỏa mãn SA = 2SM SB = 3SN SC = 4S SD = 5SQ
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông và O là giao điểm của 2 đường chéo tính thể tích khối chóp S.OAB biết thể tích S.ABCD là 24
- Cho khối lăng trụ tam giác ABC.A’B’C’ có thể tích V tính thể tích V1 của khối tứ diện A’B’C'C
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1 trên cạnh SC lấy điểm E sao cho SE=2EC
- Gọi A’, B’, C’, D’ lần lượt là trung điểm của SA, SB, SC, SD gọi lần lượt là thể tích của hai khối chóp S.A'B'C'D' và S.ABCD
- ho hình chóp S.ABC có (SAB), (SAC) cùng vuông góc với đáy, cạnh bên SB tạo với đáy một góc 60 độ đáy ABC là tam giác vuông cân tại B với BA = BC = a