-
Đáp án A
Phương pháp: Sgk 12 trang 31.
Cách giải: Thời gian thành lập Hiệp hội các nước Đông Nam Á là ngày 8-8-1967
Câu hỏi:Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho SE=2EC. Tính thể tích V của khối tứ diện SEBD.
- A. \(V=\frac{1}{6}\)
- B. \(V=\frac{1}{12}\)
- C. \(V=\frac{1}{3}\)
- D. \(V=\frac{2}{3}\)
Đáp án đúng: C
Ta có: \(\frac{{{V_{SEBD}}}}{{{V_{SBCD}}}} = \frac{{SE}}{{SC}} = \frac{2}{3}\)
Mà: \({V_{SCBD}} = \frac{1}{2}V \Rightarrow {V_{SEBD}} = \frac{2}{3}.\frac{1}{2}.V = \frac{1}{3}V = \frac{1}{3}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN GIÁN TIẾP
- Gọi A’, B’, C’, D’ lần lượt là trung điểm của SA, SB, SC, SD gọi lần lượt là thể tích của hai khối chóp S.A'B'C'D' và S.ABCD
- ho hình chóp S.ABC có (SAB), (SAC) cùng vuông góc với đáy, cạnh bên SB tạo với đáy một góc 60 độ đáy ABC là tam giác vuông cân tại B với BA = BC = a
- Cho lăng trụ ABC.A’B’C’ trên cạnh AA’ lấy trung điểm M, tính thể tích của khối đa diện MAB’C’BC
- Cho hình chóp S.ABC có A', B' lần lượt là trung điểm của các cạnh SA, SB
- Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 độ gọi M là điểm đối xứng của C qua D, N là trung điểm SC
- Cho khối tứ diện ABCD đều cạnh bằng a, M là trung điểm DC. Thể tích V của khối chóp M.ABC bằng bao nhiêu?
- Tính thể tích của khối chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SC. Biết thể tích khối tứ diện S.ABI là V
- Tính thể tích tứ khối đa diện ABC.MNP lăng trụ đứng ABC.A’B’C’ có thể tích bằng V. Các điểm M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’ sao cho
- Tính thể tích V của khối chóp S.ABC biết góc {ASB} = {BSC} = {CSA} = 60 độ và SA=a, SB=3a/2, SC=2a
- Tính thể tích khối chóp S.CDE biết hình chóp S.ABC có SC=2a, SC vuông góc (ABC), đáy ABC là tam giác vuông cân tại B và có AB=asqrt2