YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(f(x)\) liên tục trên \(\left[ 2;4 \right]\) và có bảng biến thiên như hình vẽ bên

    Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(x+2\sqrt{{{x}^{2}}-2x}=m.f(x)\) có nghiệm thuộc đoạn \(\left[ 2;4 \right]\) ?

    • A. 3
    • B. 6
    • C. 5
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: \(x+2\sqrt{{{x}^{2}}-2x}=mf\left( x \right)\Leftrightarrow m=\frac{x+2\sqrt{{{x}^{2}}-2x}}{f\left( x \right)}\)

    Số nghiệm của phương trình \(m=\frac{x+2\sqrt{{{x}^{2}}-2x}}{f\left( x \right)}\) bằng số giao điểm của hàm số \(y=\frac{x+2\sqrt{{{x}^{2}}-2x}}{f\left( x \right)}\) với đường thẳng \(y=m.\)

    Đặt \(g\left( x \right)=x+2\sqrt{{{x}^{2}}-2x}\)

    Ta có \(\underset{\left[ 2;4 \right]}{\mathop{\min }}\,g\left( x \right)=2\) tại \(x=2,\) \(\underset{\left[ 2;4 \right]}{\mathop{\max }}\,g\left( x \right)=4+4\sqrt{2}\) tại \(x=4\)

                \(\underset{\left[ 2;4 \right]}{\mathop{\min }}\,f\left( x \right)=2\) tại \(x=4,\underset{\left[ 2;4 \right]}{\mathop{\max }}\,f\left( x \right)=4\) tại \(x=2\)

    Do \(\underset{\left[ 2;4 \right]}{\mathop{\min }}\,g\left( x \right)=2\) và \(\underset{\left[ 2;4 \right]}{\mathop{\max }}\,f\left( x \right)=4\) đều đồng thời xảy ra tại \(x=2\)

    Suy ra: \(\underset{\left[ 2;4 \right]}{\mathop{\min }}\,\left( \frac{x+2\sqrt{{{x}^{2}}-2x}}{f\left( x \right)} \right)=\frac{\underset{\left[ 2;4 \right]}{\mathop{\min }}\,g\left( x \right)}{\underset{\left[ 2;4 \right]}{\mathop{\max }}\,f\left( x \right)}=\frac{2}{4}=\frac{1}{2}\)

    Do \(\underset{\left[ 2;4 \right]}{\mathop{\min }}\,f\left( x \right)=2\) và \(\underset{\left[ 2;4 \right]}{\mathop{\max }}\,g\left( x \right)=4+4\sqrt{2}\) đều đồng thời xảy ra tại \(x=4\)

    Suy ra: \(\underset{\left[ 2;4 \right]}{\mathop{\max }}\,\left( \frac{x+2\sqrt{{{x}^{2}}-2x}}{f\left( x \right)} \right)=\frac{\underset{\left[ 2;4 \right]}{\mathop{\max }}\,g\left( x \right)}{\underset{\left[ 2;4 \right]}{\mathop{\min }}\,f\left( x \right)}=\frac{4+4\sqrt{2}}{2}=2+2\sqrt{2}\)

    Mà hàm số \(y=\frac{x+2\sqrt{{{x}^{2}}-2x}}{f\left( x \right)}\) liên tục trên đoạn \(\left[ 2;4 \right].\)

    Vậy \(\frac{1}{2}\le m\le 2+2\sqrt{2},\) mà \(m\) nguyên nên \(m\) nhận các giá trị \(\left\{ 1;2;3;4 \right\}\) nên chọn đáp án D.

    ATNETWORK

Mã câu hỏi: 280838

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON